Math 1010 Week 13

Definite Integrals

13.1 Motivation

Given a continuous function over a closed interval. We want to approximate the area of the region bounded by the graph of the function and the x-axis.

One way to do so is by viewing the region roughly as a union of sequence of rectangles, and then adding up the areas of these rectangles.

IMAGE

5 rectangles.

IMAGE

10 rectangles.

Intuitively, we see that the more (and smaller) rectangles are used, the more closely their union approximates the region in question.

IMAGE

Definition 13.1. Let n be a positive integer. Let $f : [a,b] \longrightarrow \mathbb{R}$ be a continuous function on a closed interval. Let:

$$\Delta x = \frac{b-a}{n}.$$

The Left Riemann Sum of f over [a, b] associated with n subintervals of equal lengths is:

$$LS_n(f) = \sum_{k=0}^{n-1} f(a+k\Delta x)\Delta x$$
$$= \Delta x \Big[f(a) + f(a+\Delta x) + f(a+2\Delta x) + \dots$$
$$\dots + f(a+(n-1)\Delta x) \Big]$$

Each summand may be thought of as the area of the rectangle whose base is the subinterval $[a + k\Delta x, a + (k + 1)\Delta x]$, and whose height is the value of f at the left endpoint of the subinterval.

$$IMAGEy = f(x)f(x)\Delta xx$$

Definition 13.2. Let $f : [a, b] \longrightarrow \mathbb{R}$ be a continuous function on a closed interval. The **definite integral** $\int_{a}^{b} f(x) dx$ of f over [a, b] is equal to the limit as n tends to infinity of the left Riemann sum defined previously. That is:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} LS_n(f)$$
$$= \lim_{n \to \infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + \frac{k(b-a)}{n}\right)$$

It is an established theorem that the limit exists if f is continuous.

(In fact: One could define the definite integral in terms of the Right Riemann Sum or the Midpoint Riemann Sum. All these sums tend to same limit in the case where f is continuous.) Our eventual goal is to show that if F is an antiderivative of a continuous function f, then:

$$\int_{a}^{b} f(x) \, dx = F(x) \Big|_{a}^{b} := F(b) - F(a).$$

• Integration by Substitution

$$\int_{a}^{b} f(u(x))u'(x) \, dx = \int_{u(a)}^{u(b)} f(u) \, du = F(u(b)) - F(u(a))$$

if F is an antiderivative of f.

• Integration by Parts

$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)u'(x)\,dx.$$

• Integration by Trigonometric Substitution

$$\int_{-3}^{3} \frac{dx}{\sqrt{3^2 + x^2}} = \int_{-\pi/4}^{\pi/4} \cos\theta \sec^2\theta d\theta$$

• Reduction Formulas

$$\int_0^{\pi/2} \cos^n x \, dx = \left(\frac{1}{n} \, \cos^{n-1} x \sin x\right) \Big|_0^{\pi/2} + \frac{n-1}{n} \int_0^{\pi/2} \cos^{n-2} x \, dx.$$

Before we prove the main theorem, we first state a couple of preliminary results.

Fact 13.3. For a continuous function f on [a, b], we have:

$$\int_{a}^{a} f(x) dx = 0.$$
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx.$$

Fact 13.4. Let f be a continuous function on an interval I. For all $a, b, c \in I$, we have:

$$\int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx = \int_{a}^{c} f(x) \, dx.$$

If f is an odd continuous function, then:

$$\int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx$$

= $\int_{-a}^{0} -(f(-x))dx + \int_{0}^{a} f(x)dx$
= $\underbrace{\int_{t=a}^{t=0} (f(t))dt}_{t=-x} + \int_{0}^{a} f(x)dx$
= $\int_{a}^{a} f(x)dx$
= 0

If f is an even continuous function, then:

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$

Claim 13.5. Let f, g be continuous functions on [a, b]. If $f(x) \leq g(x)$ for all $x \in [a, b]$, then:

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx.$$

Example 13.6. Find the area of the region in the xy-plane bounded between the graph of $y = x^2 - 2x - 3$ and the x-axis over the interval [1, 5].

IMAGE

The geometric area of the region described is equal to:

$$\int_{1}^{5} \left| x^2 - 2x - 3 \right| \, dx$$

Consider the sign chart for the values of $f(x) = x^2 - 2x - 3 = (x + 1)(x - 3)$ over the interval [1,5]:

f(x):	—	0	+
x:	[1,3)	3	(3, 5]

Hence,

$$\int_{1}^{5} |x^{2} - 2x - 3| dx$$

$$= \int_{1}^{3} |x^{2} - 2x - 3| dx + \int_{3}^{5} |x^{2} - 2x - 3| dx$$

$$= \int_{1}^{3} - (x^{2} - 2x - 3) dx + \int_{3}^{5} (x^{2} - 2x - 3) dx$$

$$= -\left(\frac{1}{3}x^{3} - x^{2} - 3x\right)\Big|_{1}^{3} + \left(\frac{1}{3}x^{3} - x^{2} - 3x\right)\Big|_{3}^{5}$$

$$= \frac{16}{3} + \frac{32}{3}$$

$$= 16$$

Theorem 13.7. (Mean Value Theorem for Integrals) Let f be a continuous function on [a, b]. There exists $c \in [a, b]$ such that:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx.$$

Proof. Since f is continuous on [a, b], by the Extreme Value Theorem it has a maximum value M and minimum value m on [a, b].

In other words,

$$m \le f(x) \le M$$

for all $x \in [a, b]$. Hence:

$$\underbrace{\int_{a}^{b} m \, dx}_{m(b-a)} \le \int_{a}^{b} f(x) \, dx \le \underbrace{\int_{a}^{b} M \, dx}_{M(b-a)}.$$

Dividing each expression by b - a, we have:

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le M.$$

Let x_1, x_2 be elements in [a, b] such that $M = f(x_1)$ and $m = f(x_2)$. Since f is continuous on [a, b], and $\frac{1}{b-a} \int_a^b f(x) dx$ is a number between $f(x_1)$ and $f(x_2)$, by the Intermediate Value Theorem there exists c between x_1 and x_2 such that:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx.$$

This c lies in [a, b], since x_1, x_2 lies in [a, b].

Theorem 13.8 (Fundamental Theorem of Calculus Part I). Let f be a continuous function on [a, b]. Define a function $F : [a, b] \longrightarrow \mathbb{R}$ as follows:

$$F(x) = \int_{a}^{x} f(t) dt, \quad x \in [a, b].$$

Then, F is continuous on [a, b] and differentiable on (a, b), with:

$$F'(x) = f(x)$$

for all $x \in (a, b)$. Equivalently:

$$\frac{d}{dx}\int_{a}^{x}f(t)\,dt = f(x)$$

Proof. By definition:

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}.$$

= $\lim_{h \to 0} \frac{\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt}{h}.$
= $\lim_{h \to 0} \frac{\int_{x}^{x+h} f(t) dt}{h}.$

By the Mean Value Theorem for Integrals, there exists $c_h \in [x, x + h]$ such that:

$$f(c_h) = \frac{\int_x^{x+h} f(t) \, dt}{h}.$$

Hence:

$$F'(x) = \lim_{h \to 0} f(c_h) = f(x),$$

since for any h the number c_h lies between x and x + h, and f is continuous.

We leave the proof of the continuity of F on [a, b] as an exercise.

Corollary 13.9. Let f be a continuous function. Let g and h be differentiable functions. Then:

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) \, dt = f(h(x))h'(x) - f(g(x))g'(x).$$

Example 13.10. Evaluate:

$$\frac{d}{dx} \int_{\sin x}^{x^3 + 1} e^{-t^2} dt$$

$$\frac{d}{dx} \int_{\sin x}^{x^3+1} e^{-t^2} dt = e^{\left(-(x^3+1)^2\right)} (x^3+1)' - e^{\left(-(\sin x)^2\right)} (\sin x)'$$
$$= e^{\left(-(x^3+1)^2\right)} \cdot 3x^2 - e^{\left(-(\sin x)^2\right)} \cos x$$

Example 13.11. Evaluate:

$$\lim_{h \to 0^+} \frac{1}{\ln(1+h)} \int_2^{2+h} \sqrt{t^4 + 1} \, dt$$

We have:

$$\lim_{h \to 0^+} \frac{1}{\ln(1+h)} \int_2^{2+h} \sqrt{t^4 + 1} \, dt = \lim_{h \to 0^+} \frac{\int_2^{2+h} \sqrt{t^4 + 1} \, dt}{\ln(1+h)}$$
(13.1)

Computing the limits of the numerator and denominator separately, we have:

$$\lim_{h \to 0^+} \int_2^{2+h} \sqrt{t^4 + 1} \, dt = \int_2^2 \sqrt{t^4 + 1} \, dt = 0$$

(because $F(h) = \int_2^{2+h} \sqrt{t^4 + 1} dt$ is a continuous function by Fundamental Theorem of Calculus Part I), and:

$$\lim_{h \to 0^+} \ln(1+h) = \ln(1+0) = 0$$

(also because $f(h) = \ln(1+h)$ is a continuous function).

Hence, the limit (13.1) *corresponds to the indeterminate form* $\frac{0}{0}$.

Taking the limit of the ratio of the derivatives of the numerator and denominator, we have:

$$\lim_{h \to 0^+} \frac{\frac{d}{dh} \int_2^{2+h} \sqrt{t^4 + 1} \, dt}{\frac{d}{dh} \ln(1+h)} = \lim_{h \to 0^+} \frac{\left(\sqrt{(2+h)^4 + 1}\right) (2+h)'}{\frac{1}{1+h}}$$
$$= \lim_{h \to 0^+} (1+h) \left(\sqrt{(2+h)^4 + 1}\right)$$
$$= \sqrt{17}.$$

It now follows from l'Hôpital's rule that:

$$\lim_{h \to 0^+} \frac{1}{\ln(1+h)} \int_2^{2+h} \sqrt{t^4 + 1} \, dt = \sqrt{17}.$$

There is a general formula regarding derviatives of the form:

$$\frac{d}{dx}\int_{a(x)}^{b(x)}f(x,t)\,dt,$$

the discussion of which is beyond the scope of this course. However, in certain special cases, the derivative may be found using Corollary 13.9 without much further effort:

Example 13.12. Find:

$$\frac{d}{dx} \int_{x}^{3x^2} \frac{\sin(x^2t)}{t} dt, \quad x > 0.$$
(13.2)

Again, we first view x as a constant. Let: $u = x^{2}t.$

$$t = \frac{u}{x^2}, \quad dt = \frac{1}{x^2}du$$

Under this change of variable, the integral:

$$\int_{t=x}^{t=3x^2} \frac{\sin(x^2t)}{t} \, dt$$

is equal to:

$$\int_{u=x^3}^{u=3x^4} \frac{\sin(u)}{(u/x^2)} \frac{1}{x^2} \, du = \int_{u=x^3}^{u=3x^4} \frac{\sin(u)}{u} \, du$$

It now follows from Corollary 13.9 that:

$$\frac{d}{dx} \int_{t=x}^{t=3x^2} \frac{\sin(x^2t)}{t} dt = \frac{d}{dx} \left[\int_{u=x^3}^{u=3x^4} \frac{\sin(u)}{u} du \right].$$
$$= \frac{\sin(3x^4)}{3x^4} \cdot 12x^3 - \frac{\sin(x^3)}{x^3} \cdot 3x^2$$
$$= \frac{4\sin(3x^4)}{x} - \frac{3\sin(x^3)}{x}.$$

Theorem 13.13 (Fundamental Theorem of Calculus Part II). Let f be a continuous function on [a, b]. Let F be a continuous function on [a, b] which is an antiderivative of f over (a, b). Then:

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a).$$

Proof. By the Fundamental Theorem of Calculus Part I, we know that $G(x) = \int_a^x f(t) dt$ is also an antiderivative of f. By Lagrange's Mean Value Theorem and the continuity of F and G on [a, b], for all $x \in [a, b]$ we have:

$$G(x) = F(x) + C$$

for some constant C. Since $G(a) = \int_a^a f(t) dt = 0$, we have C = -F(a). Hence: $\int_a^b f(t) dt = G(b) = F(b) + C = F(b) - F(a)$.

-	-	-	1
			L
			L