
Math 1010 Week 13

Definite Integrals

13.1 Motivation
Given a continuous function over a closed interval. We want to approximate the
area of the region bounded by the graph of the function and the x-axis.

One way to do so is by viewing the region roughly as a union of sequence of
rectangles, and then adding up the areas of these rectangles.

IMAGE
5 rectangles.

IMAGE
10 rectangles.

Intuitively, we see that the more (and smaller) rectangles are used, the more
closely their union approximates the region in question.

IMAGE

Definition 13.1. Let n be a positive integer.
Let f : [a, b] −→ R be a continuous function on a closed interval.
Let:

∆x =
b− a
n

.
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The Left Riemann Sum of f over [a, b] associated with n subintervals of equal
lengths is:

LSn(f) =
n−1∑
k=0

f(a+ k∆x)∆x

= ∆x
[
f(a) + f(a+ ∆x) + f(a+ 2∆x) + . . .

· · ·+ f(a+ (n− 1)∆x)
]

Each summand may be thought of as the area of the rectangle whose base is the
subinterval [a + k∆x, a + (k + 1)∆x], and whose height is the value of f at the
left endpoint of the subinterval.

IMAGEy = f(x)f(x)∆xx

Definition 13.2. Let f : [a, b] −→ R be a continuous function on a closed interval.

The definite integral
∫ b

a

f(x) dx of f over [a, b] is equal to the limit as n tends to

infinity of the left Riemann sum defined previously. That is:∫ b

a

f(x) dx = lim
n→∞

LSn(f)

= lim
n→∞

b− a
n

n−1∑
k=0

f

(
a+

k(b− a)

n

)
It is an established theorem that the limit exists if f is continuous.

(In fact: One could define the definite integral in terms of the Right Riemann
Sum or the Midpoint Riemann Sum. All these sums tend to same limit in the case
where f is continuous.) Our eventual goal is to show that if F is an antiderivative
of a continuous function f , then:∫ b

a

f(x) dx = F (x)

∣∣∣∣b
a

:= F (b)− F (a).

• Integration by Substitution

∫ b

a

f(u(x))u′(x) dx =

∫ u(b)

u(a)

f(u) du = F (u(b))− F (u(a))

if F is an antiderivative of f .
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• Integration by Parts

∫ b

a

u(x)v′(x)dx = u(x)v(x)

∣∣∣∣b
a

−
∫ b

a

v(x)u′(x) dx.

• Integration by Trigonometric Substitution

∫ 3

−3

dx√
32 + x2

=

∫ π/4

−π/4
cos θ sec2 θdθ

• Reduction Formulas

∫ π/2

0

cosn x dx =

(
1

n
cosn−1 x sinx

)∣∣∣∣π/2
0

+
n− 1

n

∫ π/2

0

cosn−2 x dx.

Before we prove the main theorem, we first state a couple of preliminary re-
sults.

Fact 13.3. For a continuous function f on [a, b], we have:∫ a

a

f(x) dx = 0.

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

Fact 13.4. Let f be a continuous function on an interval I . For all a, b, c ∈ I , we
have: ∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx.

If f is an odd continuous function, then:
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∫ a

−a
f(x)dx=

∫ 0

−a
f(x)dx+

∫ a

0

f(x)dx

=

∫ 0

−a
−(f(−x))dx+

∫ a

0

f(x)dx

=

∫ t=0

t=a

(f(t))dt︸ ︷︷ ︸
t=−x

+

∫ a

0

f(x)dx

=

∫ a

a

f(x)dx

= 0

If f is an even continuous function, then:∫ a

−a
f(x)dx = 2

∫ a

0

f(x)dx

Claim 13.5. Let f, g be continuous functions on [a, b]. If f(x) ≤ g(x) for all
x ∈ [a, b], then: ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Example 13.6. Find the area of the region in the xy-plane bounded between the
graph of y = x2 − 2x− 3 and the x-axis over the interval [1, 5].

IMAGE

The geometric area of the region described is equal to:∫ 5

1

∣∣x2 − 2x− 3
∣∣ dx

Consider the sign chart for the values of f(x) = x2 − 2x − 3 = (x + 1)(x − 3)
over the interval [1, 5]:

f(x): − 0 +
x: [1, 3) 3 (3, 5]

Hence,
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∫ 5

1

∣∣x2 − 2x− 3
∣∣ dx

=

∫ 3

1

∣∣x2 − 2x− 3
∣∣ dx+

∫ 5

3

∣∣x2 − 2x− 3
∣∣ dx

=

∫ 3

1

−
(
x2 − 2x− 3

)
dx+

∫ 5

3

(
x2 − 2x− 3

)
dx

= −
(

1

3
x3 − x2 − 3x

)∣∣∣∣3
1

+

(
1

3
x3 − x2 − 3x

)∣∣∣∣5
3

=
16

3
+

32

3
= 16

Theorem 13.7. (Mean Value Theorem for Integrals) Let f be a continuous
function on [a, b]. There exists c ∈ [a, b] such that:

f(c) =
1

b− a

∫ b

a

f(x) dx.

Proof. Since f is continuous on [a, b], by the Extreme Value Theorem it has a
maximum value M and minimum value m on [a, b].

In other words,
m ≤ f(x) ≤M

for all x ∈ [a, b]. Hence:∫ b

a

mdx︸ ︷︷ ︸
m(b−a)

≤
∫ b

a

f(x) dx ≤
∫ b

a

M dx︸ ︷︷ ︸
M(b−a)

.

Dividing each expression by b− a, we have:

m ≤ 1

b− a

∫ b

a

f(x) dx ≤M.

Let x1, x2 be elements in [a, b] such that M = f(x1) and m = f(x2). Since

f is continuous on [a, b], and
1

b− a

∫ b

a

f(x) dx is a number between f(x1) and

f(x2), by the Intermediate Value Theorem there exists c between x1 and x2 such
that:

f(c) =
1

b− a

∫ b

a

f(x) dx.

This c lies in [a, b], since x1, x2 lies in [a, b].
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Theorem 13.8 (Fundamental Theorem of Calculus Part I). Let f be a continuous
function on [a, b]. Define a function F : [a, b] −→ R as follows:

F (x) =

∫ x

a

f(t) dt, x ∈ [a, b].

Then, F is continuous on [a, b] and differentiable on (a, b), with:

F ′(x) = f(x)

for all x ∈ (a, b). Equivalently:

d

dx

∫ x

a

f(t) dt = f(x)

Proof. By definition:

F ′(x) = lim
h→0

F (x+ h)− F (x)

h
.

= lim
h→0

∫ x+h
a

f(t) dt−
∫ x
a
f(t) dt

h
.

= lim
h→0

∫ x+h
x

f(t) dt

h
.

By the Mean Value Theorem for Integrals, there exists ch ∈ [x, x + h] such
that:

f(ch) =

∫ x+h
x

f(t) dt

h
.

Hence:

F ′(x) = lim
h→0

f(ch) = f(x),

since for any h the number ch lies between x and x+ h, and f is continuous.

We leave the proof of the continuity of F on [a, b] as an exercise.

Corollary 13.9. Let f be a continuous function. Let g and h be differentiable
functions. Then:

d

dx

∫ h(x)

g(x)

f(t) dt = f(h(x))h′(x)− f(g(x))g′(x).

6



Example 13.10. Evaluate:

d

dx

∫ x3+1

sinx

e−t
2

dt

d

dx

∫ x3+1

sinx

e−t
2

dt = e(−(x
3+1)2)(x3 + 1)′ − e(−(sinx)2)(sinx)′

= e(−(x
3+1)2) · 3x2 − e(−(sinx)2) cosx

Example 13.11. Evaluate:

lim
h→0+

1

ln(1 + h)

∫ 2+h

2

√
t4 + 1 dt

We have:

lim
h→0+

1

ln(1 + h)

∫ 2+h

2

√
t4 + 1 dt = lim

h→0+

∫ 2+h

2

√
t4 + 1 dt

ln(1 + h)
(13.1)

Computing the limits of the numerator and denominator separately, we have:

lim
h→0+

∫ 2+h

2

√
t4 + 1 dt =

∫ 2

2

√
t4 + 1 dt = 0

(because F (h) =
∫ 2+h

2

√
t4 + 1 dt is a continuous function by Fundamental The-

orem of Calculus Part I ), and:

lim
h→0+

ln(1 + h) = ln(1 + 0) = 0

(also because f(h) = ln(1 + h) is a continuous function).
Hence, the limit (13.1) corresponds to the indeterminate form 0

0
.

Taking the limit of the ratio of the derivatives of the numerator and denomina-
tor, we have:

lim
h→0+

d
dh

∫ 2+h

2

√
t4 + 1 dt

d
dh

ln(1 + h)
= lim

h→0+

(√
(2 + h)4 + 1

)
(2 + h)′

1
1+h

= lim
h→0+

(1 + h)
(√

(2 + h)4 + 1
)

=
√

17.
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It now follows from l’Hôpital’s rule that:

lim
h→0+

1

ln(1 + h)

∫ 2+h

2

√
t4 + 1 dt =

√
17.

There is a general formula regarding derviatives of the form:

d

dx

∫ b(x)

a(x)

f(x, t) dt,

the discussion of which is beyond the scope of this course. However, in certain
special cases, the derivative may be found using Corollary 13.9 without much
further effort:

Example 13.12. Find:

d

dx

∫ 3x2

x

sin(x2t)

t
dt, x > 0. (13.2)

Again, we first view x as a constant.
Let:

u = x2t.

So:
t =

u

x2
, dt =

1

x2
du.

Under this change of variable, the integral:∫ t=3x2

t=x

sin(x2t)

t
dt

is equal to: ∫ u=3x4

u=x3

sin(u)

(u/x2)

1

x2
du =

∫ u=3x4

u=x3

sin(u)

u
du

It now follows from Corollary 13.9 that:

d

dx

∫ t=3x2

t=x

sin(x2t)

t
dt =

d

dx

[∫ u=3x4

u=x3

sin(u)

u
du

]
.

=
sin(3x4)

3x4
· 12x3 − sin(x3)

x3
· 3x2

=
4 sin(3x4)

x
− 3 sin(x3)

x
·
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Theorem 13.13 (Fundamental Theorem of Calculus Part II). Let f be a contin-
uous function on [a, b]. Let F be a continuous function on [a, b] which is an an-
tiderivative of f over (a, b). Then:∫ b

a

f(x) dx = F (b)− F (a).

Proof. By the Fundamental Theorem of Calculus Part I, we know that G(x) =∫ x
a
f(t) dt is also an antiderivative of f . By Lagrange’s Mean Value Theorem and

the continuity of F and G on [a, b], for all x ∈ [a, b] we have:

G(x) = F (x) + C

for some constant C.
Since G(a) =

∫ a

a

f(t) dt = 0, we have C = −F (a).

Hence: ∫ b

a

f(t) dt = G(b) = F (b) + C = F (b)− F (a).
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