
Math 1010 Week 12

Indefinite Integrals, Reduction Formulas, Partial Fractions,
t-Substitution

12.1 Reduction Formulas
Let n ∈ N.

Example 12.1. ∫
xnex dx︸ ︷︷ ︸
In

= xnex − n
∫
xn−1ex dx︸ ︷︷ ︸

In−1

.

Example 12.2. For n ≥ 2,∫
cosn x dx =

1

n
cosn−1 x sinx+

n− 1

n

∫
cosn−2 x dx.

Let U = cosn−1 x, dV = cosx dx. Then:

dU = −(n− 1) cosn−2 x sinx dx, V = sinx.

It follows from Section 10.8 () that:∫
U dV = UV −

∫
V dU

= cosn−1 x sinx+ (n− 1)

∫
sin2 x cosn−2 x dx

= cosn−1 x sinx+ (n− 1)

∫
(1− cos2 x) cosn−2 x dx

= cosn−1 x sinx+ (n− 1)

∫
cosn−2 x dx− (n− 1)

∫
cosn x dx
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Hence:

(1 + (n− 1))

∫
cosn x dx

= cosn−1 x sinx+ (n− 1)

∫
cosn−2 x dx.

Dividing both sides of the equation by n, we obtain:∫
cosn x dx =

1

n
cosn−1 x sinx+

n− 1

n

∫
cosn−2 x dx.

Example 12.3. For n ≥ 2,∫
sinn x dx = − 1

n
sinn−1 x cosx+

n− 1

n

∫
sinn−2 x dx.

Example 12.4. For n ≥ 3,∫
secn x dx =

1

n− 1
secn−2 x tanx+

n− 2

n− 1

∫
secn−2 x dx.

Example 12.5. ∫
(lnx)n dx = x(lnx)n − n

∫
(lnx)n−1 dx.

12.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

12.3 Partial Fractions
Definition 12.6. A rational function

r

s
, where r, s are polynomials, is said to be

proper if:
deg r < deg s.
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By performing long division of polynomials, any rational function
p

q
, where

p, q are polynomials, may be expressed in the form:

p

q
= g +

r

s
,

where g is a polynomial, and
r

s
is a proper rational function. Let

r

s
be a proper

rational function. Factor s as a product of powers of distinct irreducible factors:

s = · · · (x− a)m · · · ( x2 + bx+ c︸ ︷︷ ︸
irreduciblei.e. b2−4c<0

)n · · · .

Then:

Fact 12.7. The proper rational function
r

s
may be written as a sum of rational

functions as follows:

r

s
= · · ·

+
A1

x− a
+

A2

(x− a)2
+ · · ·+ Am

(x− a)m
+ · · ·

+
B1x+ C1

x2 + bx+ c
+

B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n

+ · · · ,

where the Ai, Bi, Ci are constants.

Example 12.8.
∫
x3 − x− 2

x2 − 2x
dx

Performing long division for polynomials, we have:∫
(x3 − x− 2)

x2 − 2x
dx =

∫
(x+ 2)dx+

∫
3x− 2

x2 − 2x
dx

=
1

2
x2 + 2x+

∫
3x− 2

x2 − 2x
dx.

To evaluate: ∫
3x− 2

x2 − 2x
dx,

we first observe that the integrand is a proper rational function. Moreover, the
denominator factors as follows:

x2 − 2x = x(x− 2).
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Hence, by Fact 12.7 , we have:

3x− 2

x2 − 2x
=
A

x
+

B

x− 2
,

for some constants A and B. Clearing denominators, we see that the equation
above holds if and only if:

3x− 2 = A(x− 2) +Bx. (∗)

Letting x = 2, we have:
3 · 2− 2 = B · 2,

which implies that B = 2. Similarly, letting x = 0 in equation (∗) gives:

−2 = −2A,

which implies that A = 1. Hence:∫
3x− 2

x2 − 2x
dx =

∫ (
1

x
+

2

x− 2

)
dx

= ln |x|+ 2 ln |x− 2|+ C,

where C represents an arbitrary constant.
We conclude that:∫
(x3 − x− 2)

x2 − 2x
dx =

1

2
x2 + 2x + ln |x| + 2 ln |x− 2| + C.

Example 12.9.
∫

x

(x2 + 4)(x− 3)
dx

First we note that the integrand is a proper rational function.
The quadratic factor x2 + 4 has discriminant 02 − 4 · 4 < 0, hence it is

irreducible.
By Fact 12.7 , we have:

x

(x2 + 4)(x− 3)
=
Ax+B

x2 + 4
+

C

x− 3
,

for some constantsA,B and C. Clearing denominators, the equation above holds
if and only if:

x = (Ax+B)(x− 3) + C(x2 + 4) (∗)

Letting x = 3, we have:
3 = C · 13,
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which implies that C = 3/13.
Letting x = 0, we have:

0 = −3B + 4C,

which implies that B = (4/3)C = 4/13.
Finally, viewing each side of equation (∗) as polynomials and comparing the

coefficients of x2 on each side, we have:

0 = A+ C,

which implies that A = −C = −3/13.
Hence:∫

x

(x2 + 4)(x− 3)
dx

=
1

13

∫
−3x+ 4

x2 + 4
dx+

3

13

∫
1

x− 3
dx

=
1

13

(
−3
2

∫
1

x2 + 4
d(x2 + 4) +

∫
1

(x/2)2 + 1
dx

+3

∫
1

x− 3
dx

)
=

1

13

(
−3
2

ln
∣∣x2 + 4

∣∣+ 2arctan(x/2) + 3 ln |x− 3|
)
+D,

where D represents an arbitrary constant.

Example 12.10.
∫

x3

(x2 + x+ 1)(x− 3)2
dx

First, we observe that:

x3

(x2 + x+ 1)(x− 3)2

is a proper rational function. Moreover, since the discriminant of x2+x+1 is 12−
4 < 0, this quadratic factor is irreducible. So, there exist constants A,B,C,D
such that:

x3

(x2 + x+ 1)(x− 3)2
=

Ax+B

x2 + x+ 1
+

C

x− 3
+

D

(x− 3)2
.

The equation above holds if and only if:

x3 = (Ax+B)(x− 3)2 + C(x2 + x+ 1)(x− 3)

+D(x2 + x+ 1).
(∗)
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Letting x = 3, we have:
27 = 13D.

So, D = 27/13.
To find A,B and C, we view each side of the equation (∗) as polynomials,

then compare the coefficients of the x3, x2, x and constant terms respectively:

x3 : 1 = A+ C (12.1)
x2 : 0 = −6A+B − 2C + 27/13 (12.2)
x : 0 = 9A− 6B − 2C + 27/13 (12.3)
1 : 0 = 9B − 3C + 27/13 (12.4)

Subtracting equation (12.2) from equation (12.3), we have:

0 = 15A− 7B,

which implies that B = 15A/7. Combining this with equation (12.1), we have:

B = 15(1− C)/7 = 15/7− 15C/7.

It now follows from equation (12.4) that:

0 = 135/7− 135C/7− 3C + 27/13.

Hence:

C =
162

169

B =
15

169

A =
7

169

D =
27

13
.

We have:∫
x3

(x2 + x+ 1)(x− 3)2
dx

=

∫ [
7x+ 15

169 (x2 + x+ 1)
+

162

169 (x− 3)
+

27

13 (x− 3)2

]
dx

=

∫
7x+ 15

169 (x2 + x+ 1)
dx

+
162

169

∫
1

(x− 3)
dx+

27

13

∫
1

(x− 3)2
dx
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To evaluate
∫

7x+15
169(x2+x+1)

dx, we first rewrite the integral as follows:∫
7x+ 15

169 (x2 + x+ 1)
dx =

1

169

∫
7x+ 7/2− 7/2 + 15

x2 + x+ 1
dx

=
1

169
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2

∫
2x+ 1

x2 + x+ 1
dx︸ ︷︷ ︸∫

1
x2+x+1

d(x2+x+1)

+
23

2

∫
1

(x+ 1/2)2 + 3/4
dx︸ ︷︷ ︸

4
3

∫
1

((2x+1)/
√
3)2+1

dx


=

7

338
ln
∣∣x2 + x+ 1

∣∣+ 23 · 2
169 · 3

√
3

2
arctan

(
(2x+ 1)/

√
3
)
+ E

=
7

338
ln
∣∣x2 + x+ 1

∣∣+ 23

169
√
3
arctan

(
(2x+ 1)/

√
3
)
+ E,

where E represents an arbitrary constant.
It now follows that:∫

x3

(x2 + x+ 1)(x− 3)2
dx

=
7

338
ln
∣∣x2 + x+ 1

∣∣+ 23

169
√
3
arctan

(
(2x+ 1)/

√
3
)

+
162

169
ln |x− 3| − 27

13

1

x− 3
+ E.

Example 12.11.
∫

8x2

x4 + 4
dx

12.4 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK
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7. WeBWorK

8. WeBWorK

9. WeBWorK

10. WeBWorK

11. WeBWorK

12. WeBWorK

13. WeBWorK

14. WeBWorK

15. WeBWorK

12.5 How Does Partial Fractions Decomposition Work?
This section is optional. You don’t have to study it for Math 1010.

Theorem 12.12 (Unique Factorization of Real Polynomials). Given any polyno-
mial f ∈ R[x], that is:

f = a0 + a1x+ ...+ anx
n, ai ∈ R,

There are distinct irreducible polynomials, p1, p2, . . . , pl in R[x] , of degree at
most 2, such that:

f = pn1
1 p

n2
2 · · · p

nl
l

for some positive integers n1, n2, . . . , nl. Up to ordering of the irreducible factors,
this factorization is unique.

Theorem 12.13 (Bézout’s Identity). If f and g are two irreducible polynomials
in R[x] with no common factors, then there exist a, b ∈ R[x] such that:

af + bg = 1

Suppose we have a rational function p
q
, where p, q ∈ R[x] have no common

factors, and deg p < deg q.
By Unique Factorization of Real Polynomials , there are distinct irreducible

polynomials q1, q2, . . . , ql, of degree at most 2, such that:

q = qn1
1 q

n2
2 · · · q

nl
l ,
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for some positive integers n1, n2, . . . , nl.
Since the polynomial qn1

1 has no common factors with qn2
2 . . . qnl

l , by Bézout’s
Identity there exist polynomials f, g such that:

f · (qn2
2 · · · q

nl
l ) + gqn1

1 = 1.

Hence,

p

q
=
p · 1
q

=
p(fqn2

2 · · · q
nl
l + gqn1

1 )

qn1
1 q

n2
2 · · · q

nl
1

=
pf

qn1
1

+
pg

qn2
2 · · · q

nl
l

Consider now the term:
pf

qn1
1

. By the Divison Algorithm for real polynomials,

we have:
pf = aq1 + r

for some real polynomials a, r such that deg r < deg q1. Hence,

pf

qn1
1

=
aq1 + r

qn1
1

=
a

qn1−1
1

+
r

qn1
1

By the same reasoning, we have:

a

qn1−1
1

=
b

qn1−2
1

+
s

qn1−1
1

for some polynomials b, s such that deg s < deg q1.
Repeating this process, eventually we have:

pf

qn1
1

=
r1
q1

+
r2
q21

+ · · ·+ rn1

qn1
1

+ a1,

where deg ri < deg q1, and a1 is some polynomial.
We now have:

p

g
=
r1
q1

+
r2
q21

+ · · ·+ rn1

qn1
1

+ a1 +
pg

qn2
2 · · · q

nl
l

.

Repeating the process for the term:
pg

qn2
2 · · · q

nl
l

, and then for all subsequent

resulting terms of similar forms, we have:

p

q
=

l∑
k=1

nk∑
j=1

rkj

qjk
+ h, (12.5)
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where deg rkj < deg qk, and h is some polynomial in R[x].
We claim that h = 0.
Multiplying both sides of equation (12.5) by the polynomial q, we have:

p =
l∑

k=1

nk∑
j=1

rkj ·
q

qjk
+ hq (12.6)

Since every qjk in the sum divides q, each q

qjk
is a polynomial. So, the equation

above is an equality between polynomials.
By assumption, deg p < deg q. On the other hand, each term:

rkj ·
q

qjk

has degree strictly less than q, since deg rkj < deg qk.
So, if h 6= 0, then the right-hand side of equation (12.6) has degree deg h +

deg q ≥ deg q > deg p, contradicting the equality of the two sides.
Hence, h = 0. It follows that:

p

q
=

l∑
k=1

nk∑
j=1

rkj

qjk

12.6 t-Substitution
Example 12.14. Evaluate: ∫

1

1 + 2 cosx
dx

Let:
t = tan

x

2
.

(Here, we are assuming that x ∈ (−π, π)).
Then,

x = 2arctan t,

dx =
2

1 + t2
dt

Moreover,
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by the double-angle formula for the sine function, we have:

sinx = 2 sin
x

2
cos

x

2

= 2
sin x

2

cos x
2

cos2
x

2

=
2 tan x

2

sec2 x
2

=
2t

1 + t2

Similarly, by the double-angle formula for the cosine function, we have:

cosx = 1− 2 sin2 x

2

= 1− 2 tan2 x

2
cos2

x

2

= 1−
2 tan2 x

2

sec2 x
2

= 1− 2t2

1 + t2

=
1− t2

1 + t2

We have: ∫
1

1 + 2 cosx
dx=

∫
1

1 + 2
(
1−t2

1+t2

) 2

1 + t2
dt

=

∫
2

3− t2
dt

=
1√
3

∫ (
1√
3 + t

+
1√
3− t

)
dt

=
1√
3

(
ln
∣∣∣√3 + t

∣∣∣− ln
∣∣∣√3− t∣∣∣)+ C

=
1√
3
ln

∣∣∣∣∣
√
3 + tan x

2√
3− tan x

2

∣∣∣∣∣+ C,

where C is an arbitrary constant.

Example 12.15. Evaluate: ∫
1

1 + sin x+ cosx
dx
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Let t = tan x
2
. Then:

dx =
2

1 + t2
dt

sinx =
2

1 + t2

cosx =
1− t2

1 + t2

∫
1

1 + sin x+ cosx
dx =

∫ 2
1+t2

dt

1 + 2
1+t2

+ 1−t2

1+t2∫
2dt

2 + 2t
=

∫
1

1 + t
dt

ln |1 + t|+ C

ln
∣∣∣1 + tan

x

2

∣∣∣+ C

ln

∣∣∣∣1 + sinx

1 + cos x

∣∣∣∣+ C,

where C is an arbitrary constant.
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