Math 1010 Week 1

Sequences

1.1 Sequences and Limits

A **sequence** is an ordered list of numbers:

•

 $a_1, a_2, a_3, \ldots, a_n, \ldots$

Common notations:

 $\{a_n\}, \{a_n\}_{n\in\mathbb{N}}, \{a_n\}_{n=1}^{\infty}$

Example 1.1.

•

$$a_n = \sqrt{n} , \quad n \in \mathbb{N}$$
$$\{a_n\}_{n \in \mathbb{N}} = \{1, \sqrt{2}, \sqrt{3}, \ldots\}.$$

$$b_n = (-1)^{n+1} \frac{1}{n} , \quad n \in \mathbb{N}$$
$$\{b_n\} = \left\{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots\right\}.$$

• Fibonacci Sequence

$$a_1 = 1, a_2 = 1$$
$$a_n = a_{n-2} + a_{n-1} \text{ form } \ge 3.$$
$$\{a_n\} = \{1, 1, 2, 3, 5, 8, 13, \ldots\}$$

In this case we say that the sequence $\{a_n\}$ is defined recursively.

Sometimes, the terms a_n of a sequence approach a single value L as n tends to infinity.

Definition 1.2. We say that the **limit** of a sequence $\{a_n\}$ is equal to L if for all real numbers $\varepsilon > 0$ the exists a number N > 0 such that $|a_n - L| < \varepsilon$ for all n > N.

If such a number L exists, we say that: $\{a_n\}$ converges to L, and write:

$$\lim_{n \to \infty} a_n = L$$

If no such L exists, we say that $\{a_n\}$ diverges.

If the values of a_n increase (resp. decrease) without bound, we say that $\{a_n\}$ diverges to ∞ (resp. $-\infty$), and write:

$$\lim_{n \to \infty} a_n = \infty \quad (\text{resp.} - \infty).$$

Exercise 1.3. *1*. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

1.1.1 Useful Properties

• Constant sequence

If $a_n = c$ for all n, then $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c = c$.

• Sum/Difference rule

If both $\{a_n\}$ and $\{b_n\}$ converge, then:

$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$$

• Product Rule

If both $\{a_n\}$ and $\{b_n\}$ converge, then:

$$\lim_{n \to \infty} a_n b_n = \left(\lim_{n \to \infty} a_n\right) \cdot \left(\lim_{n \to \infty} b_n\right).$$

• Quotient Rule

If both $\{a_n\}$ and $\{b_n\}$ converge, and $\lim_{n\to\infty} b_n \neq 0$, then:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \; .$$

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$

• In general, if $\lim_{n\to\infty} a_n = +\infty$ or $\lim_{n\to\infty} a_n = -\infty$, we have:

$$\lim_{n \to \infty} \frac{1}{a_n} = 0.$$

1.1.2 Examples

•
$$\lim_{n \to \infty} \frac{3n^2 - 2n + 7}{2n^2 + 3}$$
$$= \lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{n^2}} \cdot \frac{3n^2 - 2n + 7}{2n^2 + 3}$$
$$= \lim_{n \to \infty} \frac{3 - \frac{2}{n} + \frac{7}{n^2}}{2 + \frac{3}{n^2}}$$
$$= \frac{3}{2}.$$

•
$$\lim_{n \to \infty} \frac{-3n^2}{\sqrt[3]{27n^6 - 5n + 1}}$$

$$= \lim_{n \to \infty} \frac{-3n^2}{n^2 \sqrt[3]{27 - \frac{5}{n^5} + \frac{1}{n^6}}}$$
$$= \lim_{n \to \infty} \frac{-3}{\sqrt[3]{27 - \frac{5}{n^5} + \frac{1}{n^6}}}$$
$$= \frac{-3}{\sqrt[3]{27}} = -1.$$

• $\lim_{n \to \infty} \sqrt{4n^2 + n} - \sqrt{4n^2 - 1}$

$$= \lim_{n \to \infty} \left(\sqrt{4n^2 + n} - \sqrt{4n^2 - 1} \right) \cdot \frac{\left(\sqrt{4n^2 + n} + \sqrt{4n^2 - 1} \right)}{\left(\sqrt{4n^2 + n} + \sqrt{4n^2 - 1} \right)}$$

$$= \lim_{n \to \infty} \frac{(4n^2 + n) - (4n^2 - 1)}{\left(\sqrt{4n^2 + n} + \sqrt{4n^2 - 1} \right)}$$

$$= \lim_{n \to \infty} \frac{n + 1}{\sqrt{4n^2 + n} + \sqrt{4n^2 - 1}}$$

$$= \lim_{n \to \infty} \frac{n + 1}{n \left(\sqrt{4 + \frac{1}{n}} + \sqrt{4 - \frac{1}{n^2}} \right)}$$

$$= \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{\left(\sqrt{4 + \frac{1}{n}} + \sqrt{4 - \frac{1}{n^2}} \right)}$$

$$= \frac{1}{4}.$$

Exercise 1.4. • WeBWorK

1.1.3 Monotonic Sequences

Definition 1.5. A sequence $\{a_n\}$ is said to be:

- increasing if $a_{n+1} \ge a_n$ for all n,
- decreasing if $a_{n+1} \leq a_n$ for all n.

A sequence is said to be **monotonic** if it is either increasing or decreasing.

Theorem 1.6 (Monotone Convergence Theorem). If $\{a_n\}$ is either:

increasing (i.e. $a_{n+1} \ge a_n$ for all n) and bounded above (i.e. There exists a number M such that $a_n \le M$ for all n.), or

decreasing (i.e. $a_{n+1} \leq a_n$ for all n) and bounded below (i.e. There exists a number M such that $a_n \geq M$ for all n.), then $\{a_n\}$ converges.

Moreover,

if $\{a_n\}$ is increasing and $a_n \leq M$ for all n, then $\lim_{n\to\infty} a_n \leq M$.

If $\{a_n\}$ is decreasing and $a_n \ge M$ for all n, then $\lim_{n\to\infty} a_n \ge M$.

Example 1.7. Let $\{a_n\}$ be a sequence of real numbers, which is defined by

$$a_1 = 1$$
 and $a_n = \frac{12a_{n-1} + 12}{a_{n-1} + 13}$ for $n > 1$.

1. Prove that $0 \le a_n \le 3$. (Hint: Perhaps mathematical induction could be useful here.)

2. Prove that $\{a_n\}$ converges (i.e. $\lim_{n\to\infty} a_n$ exists), then find its limit.

Solution. *1. First, we show that* $a_n \ge 0$ *for all* $n \in \mathbb{N}$ *. Base Step : By definition,* $a_1 = 1 \ge 0$ *.*

<u>Inductive Step</u>: Suppose $a_n \ge 0$ for some $n \in \mathbb{N}$. We want to show that $a_{n+1} \ge 0$ also.

By the definition of the sequence, we have:

$$a_{n+1} = \frac{12a_n + 12}{a_n + 13}.$$

By the induction hypothesis , i.e. $a_n \ge 0$, we have:

$$a_n + 13 > 0$$
 and $12a_n + 12 \ge 0$.

Hence, $a_{n+1} \geq 0$.

It now follows from the principle of mathematical induction that $a_n \ge 0$ for all $n \in \mathbb{N}$.

Similary, to show that $a_n \leq 3$, we first observe that by definition $a_1 = 1 \leq 3$. Whenever $a_n \leq 3$, we have:

$$3 - a_{n+1} = 3 - \frac{12a_n + 12}{a_n + 13}$$

= $\frac{3a_n + 39 - 12a_n - 12}{a_n + 13}$
= $\frac{9(3 - a_n)}{a_n + 13} \ge 0,$

which implies that $a_{n+1} \leq 3$ also. Hence, by mathematical induction we conclude that $a_n \leq 3$ for all $n \in \mathbb{N}$.

2. Observe that for all $n \in \mathbb{N}$, we have:

$$a_{n+1} - a_n = \frac{12a_n + 12}{a_n + 13} - a_n$$

= $\frac{12a_n + 12 - a_n^2 - 13a_n}{a_n + 13}$
= $-\frac{a_n^2 + a_n - 12}{a_n + 13}$
= $-\frac{(a_n - 3)(a_n + 4)}{a_n + 13}$
 $\ge 0,$

since $0 \le a_n \le 3$, as shown in Part 1.

This shows that $\{a_n\}$ is an increasing sequence bounded above by 3. Hence, the limit $L = \lim_{n \to \infty} a_n$ exists, by the Monotone Convergence Theorem. To find L, we take the limit as $n \to \infty$ of both sides of the equation:

$$a_n = \frac{12a_{n-1} + 12}{a_{n-1} + 13}.$$

That is:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{12a_{n-1} + 12}{a_{n-1} + 13}$$

which gives:

$$L = \frac{12L + 12}{L + 13},$$

since $\lim_{n\to\infty} a_{n-1} = \lim_{n\to\infty} a_n = L$. The equation above implies that:

$$L^2 + L - 12 = 0,$$

which gives L = 3 or L = -4. Since the sequence $\{a_n\}$ is bounded below by 0, we may eliminate the case L = -4.

We conclude that:

$$\lim_{n \to \infty} a_n = 3.$$

Sandwich Theorem 1.1.4

Theorem 1.8 (Sandwich Theorem for Sequences). Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ be sequences such that:

$$a_n \le b_n \le c_n$$

for all n sufficiently large. If

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L,$$

then $\lim_{n\to\infty} b_n = L$ also.