Math 1010 Week 3

Functions, Limits, Sandwich Theorem

3.1 Limits of Functions on the Real Line

Let $f : A \longrightarrow \mathbb{R}$ be a function, where $A \subseteq \mathbb{R}$. Let a be a point on the real line such that f is defined on a neighborhood of a (though not necessarily at a itself).

Definition 3.1. We say that the limit of f at a is L if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - L| < \varepsilon$ whenever x satisfies $0 < |x - a| < \delta$.

If f has a limit L at a, we write:

$$\lim_{x \to a} f(x) = L$$

Note that the limit may exist even if a does not lie in the domain of f.

Remark. Intuitively, $\lim_{x\to a} f(x) = L$ means that the value f(x) approaches L as x approaches a from either side, or that f(x) is very near L whenever x is very near a. Obviously, the term "near" is somewhat vague, and it is precisely because of this vagueness that mathematicians feel the need to define limits rigorously using the " δ - ε " language.

Example 3.2. Consider $f(x) = \frac{x^2 - 4}{x + 2}$. Note that the function f is not defined at -2.

Observe that for x near -2, for example, x = -2.001, or x = -1.9999, we have:

$$f(-2.001) = -4.001,$$

$$f(-1.9999) = -3.9999,$$

which are close to -4.

Moreover, as x "approaches" -2 ($x = -2.001, -2.0001, -2.00001, \ldots$), we have f(x) = -4.001, -4.0001, -4.0001. So, it appears f(x) approaches -4 as x approaches -2. This suggests that the limit of f(x) at x = -2 is:

$$\lim_{x \to -2} f(x) = -4$$

This turns out to be true, and is not surprising, since we can rewrite f(x) as follows:

$$f(x) = \begin{cases} \frac{(x+2)(x-2)}{x+2}, & \text{if } x \neq -2; \\ \text{undefined}, & \text{if } x = -2. \end{cases}$$
$$= \begin{cases} x-2, & \text{if } x \neq -2; \\ \text{undefined}, & \text{if } x = -2. \end{cases}$$

Hence, all along we have really been asking what x - 2 tends to as x tends to -2.

Definition 3.3. Let $f : A \longrightarrow \mathbb{R}$ be a function, where $A \subseteq \mathbb{R}$ is unbounded towards $+\infty$ and/or $-\infty$. We say that the limit of f at ∞ (resp. $-\infty$) is L if for all $\varepsilon > 0$, there exists a $c \in \mathbb{R}$ such that $|f(x) - L| < \varepsilon$ whenever x > c (resp. x < c).

If f has a limit L at ∞ (resp $-\infty$), we write:

$$\lim_{x \to \infty} f(x) = L \quad \left(\text{resp.} \lim_{x \to -\infty} f(x) = L \right)$$

Some Useful Identities 3.1.1

In the following idenities, the symbol a can be either a real number or $\pm \infty$.

- 1. For any constant $c \in \mathbb{R}$, we have $\lim c = c$.
- 2. $\lim x = a$.
- 3. If $\lim_{x\to a} f(x) = L$, and $\lim_{x\to a} g(x) = M$, then:
 - $\lim_{x \to a} (f \pm g)(x) = L \pm M.$
 - $\lim_{x \to a} fg(x) = LM.$
 - •

$$\lim_{x \to a} \frac{f}{g}(x) = \frac{L}{M}$$

provided that $M \neq 0$.

 \overline{x}

4. If $\lim_{x\to a} f(x) = L$, then:

$$\lim_{x \to a} (f(x))^n = L^n \quad \text{ for all } n \in \mathbb{N} = \{1, 2, 3, \ldots\},\$$

and

 $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L} \quad \text{for all odd positive integers} n.$

In particular, for all positive integer n, we have:

$$\lim_{x \to a} x^n = a^n.$$

5. If $\lim_{x\to a} f(x) = L > 0$, then $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$ for all $n \in \mathbb{N}$.

Example 3.4. Compute the following limits, if they exist:

• $\lim_{x \to -1} \frac{x^2 - 1}{x^2 - 5x - 6}$

• $\lim_{x \to 4} \frac{2 - \sqrt{x}}{16 - x^2}$

3.2 WeBWorK

- 1. WeBWorK
- 2. WeBWorK
- 3. WeBWorK
- 4. WeBWorK
- 5. WeBWorK

3.3 One-Sided Limits

- We write $\lim_{x\to a^+} f(x) = L$ if f(x) approaches L as x approaches a from the right. We call this L the **right limit** of f at a.
- Similarly, we write lim f(x) = L if f(x) approaches L as x approaches a from the left. We call this L the left limit of f at a.

The limit $\lim_{x\to a} f(x)$ is sometimes called the **double-sided limit** of f at a. It exists if and only if both one-sided limits exist and are equal to each other. In which case, we have:

$$\lim_{x \to a} f(x) = \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x).$$

Exercise 3.5. Define

$$f(x) = \begin{cases} x - 1 & \text{if } 1 \le x \le 2, \\ 2x + 3 & \text{if } 2 < x \le 4, \\ x^2 & \text{otherwise.} \end{cases}$$

Compute $\lim_{x\to 2^+} f(x)$ and $\lim_{x\to 2^-} f(x)$. Then, find $\lim_{x\to 2} f(x)$, if it exists.

Answers.

1.

$$\lim_{x \to 2^+} f(x) = 7$$
$$\lim_{x \to 2^-} f(x) = 1$$

2. Since $\lim_{x\to 2^+} f(x) \neq \lim_{x\to 2^-} f(x)$, the double-sided limit $\lim_{x\to 2} f(x)$ does not exist.

3.4 WeBWorK

- 1. WeBWorK
- 2. WeBWorK
- 3. WeBWorK
- 4. WeBWorK
- 5. WeBWorK

3.5 Sandwich Theorem for Functions on the Real Line

Theorem 3.6. Let $a \in \mathbb{R}$, A an open neighborhood of a which does not necessarily contain a itself. Let $f, g, h : A \longrightarrow \mathbb{R}$ be functions such that:

$$g(x) \le f(x) \le h(x)$$
 for all $x \in A$,

and

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L.$$

Then, $\lim_{x \to a} f(x) = L$. Similary,

Theorem 3.7. If f, g, h are functions on \mathbb{R} such that:

$$g(x) \le f(x) \le h(x)$$

for all x sufficiently large, and

$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} h(x) = L,$$

then $\lim_{x \to \infty} f(x) = L$.

Exercise 3.8. *Find the following limits, if they exist:*

• $\lim_{x \to \infty} \frac{\sin x}{x}$

• $\lim_{x \to \infty} \frac{x + \sin x}{x - \sin x}$

Theorem 3.9.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Corollary 3.10.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \; .$$

Proof.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \left(\frac{1 + \cos x}{1 + \cos x}\right)$$
$$= \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2 (1 + \cos x)}$$
$$= \lim_{x \to 0} \frac{\sin^2 x}{x^2 (1 + \cos x)}$$
$$= \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \frac{1}{1 + \cos x}$$
$$= \left(\lim_{x \to 0} \frac{\sin x}{x}\right)^2 \cdot \left(\lim_{x \to 0} \frac{1}{1 + \cos x}\right)$$
$$= 1^2 \cdot \frac{1}{1 + 1} = \frac{1}{2}$$

Corollary 3.11.

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \; .$$

Exercise 3.12. *Find the following limits, if they exist:*

•
$$\lim_{x \to 0} \frac{\sin(5x)}{\tan(3x)}$$

•
$$\lim_{x \to 0} \frac{x^3 \cos\left(\frac{1}{x}\right)}{\tan x}$$

3.6 WeBWorK

- 1. WeBWorK
- 2. WeBWorK
- 3. WeBWorK
- 4. WeBWorK
- 5. WeBWorK
- 6. WeBWorK