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Abstract

Recovering a function or high-dimensional parameter vector from indirectmea-
surements is a central task in various scienti�c areas. Several methods for solv-
ing such inverse problems are well developed and well understood. Recently,
novel algorithms using deep learning and neural networks for inverse problems
appeared. While still in their infancy, these techniques show astonishing per-
formance for applications like low-dose CT or various sparse data problems.
However, there are few theoretical results for deep learning in inverse problems.
In this paper, we establish a complete convergence analysis for the proposed
NETT (network Tikhonov) approach to inverse problems. NETT considers
nearly data-consistent solutions having small value of a regularizer de�ned by a
trained neural network. We derive well-posedness results and quantitative error
estimates, and propose a possible strategy for training the regularizer. Our theo-
retical results and framework are different from any previous work using neural
networks for solving inverse problems.A possible data driven regularizer is pro-
posed. Numerical results are presented for a tomographic sparse data problem,
which demonstrate good performance of NETT even for unknowns of different
type from the training data. To derive the convergence and convergence rates
results we introduce a new framework based on the absolute Bregman distance
generalizing the standard Bregman distance from the convex to the non-convex
case.
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1. Introduction

We study the stable solution of inverse problems of the form

Estimate x ∈ D from data yδ = F(x)+ ξδ . (1.1)

Here F :D ⊆ X→ Y is a possibly non-linear operator between re�exive Banach spaces (X, ‖·‖)
and (Y, ‖·‖) with domain D. We allow a possibly in�nite-dimensional function space setting,
but clearly the approach and results apply to a �nite dimensional setting as well. The element
ξδ ∈ Ymodels the unknown data error (noise) which is assumed to satisfy the estimate ‖ ξδ‖ ≤
δ for some noise level δ ≥ 0. We focus on the ill-posed (or ill-conditioned) case where without
additional information, the solution of (1.1) is either highly unstable, highly underdetermined,
or both. Many inverse problems in biomedical imaging, geophysics, engineering sciences, or
elsewhere can be written in such a form (see, for example, [18, 38, 45]).

The stable solution of inverse problems requires regularization methods, which are based
on approximating (1.1) by neighboring well-posed problems that enforce stability and unique-
ness. On the other hand, recently, several deep learning approaches for inverse problems
have been developed (see4 for example, [1, 5, 13, 28, 30–32, 46, 48, 51, 53, 54]). In these
approaches, a trained network Φrec(V, ·) :Y→ X maps measured data to the desired output
image. Two-step reconstruction networks take the form Φrec(V, ·) = ΦCNN(V, ·) ◦ B, where
B : Y→ X maps the data to the reconstruction space (backprojection; no free parameters) and
ΦCNN(V, ·) :X→ X is a neural network, for example a convolutional neural network (CNN),
whose free parameters are adjusted to the training data. This basic form allows the use of well
established CNNs for image reconstruction [20] and already demonstrates impressing results.
Network cascades [32, 46] and trained iterative schemes [1, 2, 12, 27] learn free parameters
in iterative schemes. In such approaches, the reconstruction network can be written in the
form Φrec(V, y) = (ΦN(VN , ·) ◦ BN(y, ·) ◦ · · · ◦Φ1(V1, ·) ◦ B1(y, ·)) (x0), where x0 is the ini-
tial guess, Φk(Vk, ·) :X→ X are CNNs that can be trained, and Bk(y, ·) :X→ X are iterative
updates based on the forward operator and the data. The iterative updates may be de�ned by a
gradient step with respect to the given inverse problem. The free parameters are again adjusted
to available training data.

In this paper we introduce the NETT as a deep learning framework that uses neural networks
as regularization terms and that is shown to provide a convergent regularization method. We
note that an early related work [43] uses denoisers as regularizers which also includes certain
CNNs. In [2], the norm of a residual network is used as a regularizer. Another related work
[12] uses a learned proximal operator instead of a regularization term. After the present paper
was initially submitted, other works explored the idea of neural networks as regularizers. In

4We initially submitted our paper to a recognized journal in February 28, 2018. On June 18, 2019 (�rst decision date),
we have been informed that the paper is rejected. Since so much work has been done in the emerging �eld of deep
learning on inverse problems, for the present version, we have not updated the reference list with all the interesting
papers, but only with closely related work.
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particular, in [35] a regularizer has been proposed that distinguishes the distributions of desired
images and noisy images. In [39] a related synthesis approach has been proposed. We note,
however, that neither convergencenor convergence rates results have been derived by any work
using neural networks as regularizer.

1.1. NETT framework

Anymethod for the stable solution of (1.1) uses, either implicitly or explicitly, a priori informa-
tion about the unknowns to be recovered. Such information can be that x belongs to a certain set
of admissible elements or that x has small value of a regularizer (or regularization functional)
R :X→ [0,∞]. In this paper we focus on the latter situation and assume that the regularizer
takes the form

∀x ∈ X : R(x) = R(V, x) :=ψ(Φ(V, x)). (1.2)

Here ψ :XL→ [0,∞] is a scalar functional and Φ(V, ·) :X→ XL a neural network of depth
L where V ∈ V , for some vector space V , contains free parameters that can be adjusted to
available training data (see section 2.1 for a precise formulation). With the regularizer (1.2),
we approach (1.1) via

Tα;yδ (x) :=D(F(x), yδ)+ αR(V, x)→min
x∈D

, (1.3)

whereD : Y × Y → [0,∞] is an appropriate similarity measure in the data space enforcing data
consistency. One may takeD(F(x), yδ) = ‖F(x)− yδ‖2 but also other similarity measures such
as the Kullback–Leibler divergence (which, among others, is used in emission tomography)
are reasonable choices. Optimization problem (1.3) can be seen as a particular instance of
generalized Tikhonov regularization for solving (1.1) with a neural network as regularizer. We
therefore name (1.3) network Tikhonov (NETT) approach for inverse problems.

The network regularizer R(V, ·) can either be user-speci�ed, or a trained network, where
free parameters are adjusted on appropriate training data. Some examples are as follows.

(a) Non-linear ℓq-regularizer: a simple user-speci�ed instance of the regularizer (1.2) is the
ℓq-regularizerR(V, x) = ∑

λ∈Λvλ|〈x,ϕλ〉|
q. Here (ϕλ)λ∈Λ is a prescribed basis or frame

and (vλ)λ∈Λ are weights. In this case, the neural network is simply given by the analy-
sis operator Φ(V, ·) :X→ ℓ2(Λ) : x 7→

(

〈x,ϕλ〉
)

λ∈Λ and NETT regularization reduces to
sparse ℓq-regularization [17, 22, 23, 34, 41]. This form of the regularizer can also be com-
bined with a training procedure by adjusting the weights (vλ)λ∈Λ to a class of training
data.

In this paper we study a non-linear extension of ℓq-regularization, where the (in
general) non-convex network regularizer takes the form

R(V, x) =
∑

λ∈Λ
vλ|Φλ(V, x)|q, (1.4)

with q ≥ 1 andΦ(V, ·) = (Φλ(V, ·))λ∈Λ being a possible non-linear neural network with
multiple layers. In section 3.4 we present convergence results for this non-linear general-
ization of ℓq-regularization. By selecting non-negative weights, one can easily construct
networks that are convexwith respect to the inputs [4]. In this work, however, we consider
the general situation of arbitrary weights, in which the network regularizer (1.4) can be
non-convex.

(b) CNN regularizer: the network regularizer R(V, ·) in (1.2) may also be de�ned by a
convolutional neural network (CNN) Φ(V, ·), containing free parameters that can be
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adjusted on appropriate training data. The CNN can be trained in such a way, that the
regularizer has small value for elements x in a set of training phantoms and larger value
on a class of un-desirable phantoms. The class of un-desirable phantoms can be elements
containing undersampling artifacts, noise, or both. In section 5, we present a possible reg-
ularizer design together with a strategy for training the CNN to remove undersampling
artifacts. We present numerical results demonstrating that our approach performs well in
practice for a sparse tomographic data problem.

1.2. Main contributions

In this paper, we show that under reasonable assumptions, the NETT approach (1.3) is stably
solvable. As δ→ 0, the regularized solutions xα,δ ∈ arg minxTα;yδ (x) are shown to converge to
R(V, ·)-minimizing solutions of F(x) = y0. Here and below R(V, ·)-minimizing solutions of
F(x) = y0 are de�ned as any element

x+ ∈ arg min {R(V, x) | x ∈ D ∧ F(x) = y0} . (1.5)

Additionally, we derive convergence rates (quantitative error estimates) between R(V, ·)-
minimizing solutions x+ and regularized solutions xα,δ . As a consequence, (1.3) provides a
stable solution scheme for (1.1) using near data-consistency and encoding a priori knowl-
edge via neural networks. For proving norm convergence and convergence rates, we introduce
the absolute Bregman distance as a new generalization of the standard Bregman distance for
non-convex regularization.

The results in this paper are a main step for the regularization of inversion problems with
neural networks. For the �rst time, we present a complete convergenceanalysis and derive con-
vergence rate under reasonable assumptions.Many additional issues can be addressed in future
work. This includes the design of appropriate CNN regularizers, the development of ef�cient
algorithms for minimizing (1.3), and the consideration of other regularization strategies for
(1.5). The focus of the present paper is on the theoretical analysis of NETT and demonstrating
the feasibility of our approach; detailed comparison with other methods in terms of recon-
struction quality, computational performance and applicability to real-world data is beyond
our scope here and will be addressed in future work.

In contrast to network cascades, iterative schemes and two-step reconstruction networks, the
proposed NETT approach bounds the data consistency termD(F(xα,δ), y) also for data outside
the training set. We expect the combination of the forward problem and a neural network via
(1.3) (or, for the noiseless case, (1.5)) to increase reconstructionquality, especially in the case of
limited access to a large amount of appropriate training data. We point out that the formulation
of NETT (1.3) separates the noise characteristic and the a priori information of unknowns.
This allows us to incorporate the knowledge of data generating mechanism, e.g. Poisson noise
or Gaussian noise, by choosing the corresponding log-likelihood as the data consistency term,
and also simpli�es the training process of R(V, ·), as it to some extend avoids the impact of
noise. Meanwhile, this enhances the interpretability of the resulting approach: we on the one
hand require its �delity to the data, and on the other penalize unfavorable features (e.g. artifacts
in tomography).

1.3. Outline

The rest of this paper is organized as follows. In section 2, we describe the proposed NETT
framework for solving inverse problems. We show its stability and derive convergence in the
weak topology (see theorem 2.6). To obtain the strong convergence of NETT, we introduce a
new notion of total non-linearity of non-convex functionals. For totally non-linear regularizers,

4



Inverse Problems 36 (2020) 065005 H Li et al

we show norm convergenceof NETT (see theorem 2.11). Convergence rates (quantitative error
estimates) forNETT are derived in section 3. Amongothers, we derive a convergencerate result
in terms of the absolute Bregman distance (see proposition 3.3). A framework for learning
the data driven regularizer is proposed in section 4, and applied to a sparse data problem in
photoacoustic tomography in section 5. The paper concludeswith a short summary and outlook
presented in section 6.

2. NETT regularization

In the section we introduce the proposed NETT and analyze its well-posedness (existence, sta-
bility and weak convergence). We introduce the novel concepts of absolute Bregman distance
and total non-linearity, which are applied to establish convergence of NETTwith respect to the
norm.

2.1. The NETT framework

Our goal is to solve (1.1) with ‖ξδ‖ ≤ δ and δ > 0. For that purpose we consider minimizing
the NETT functional (1.3), where the regularizerR(V, ·) :X→ [0,∞] in (1.2) is de�ned by a
neural network of the form

Φ(V, x) := (σL ◦ VL ◦ σL−1 ◦ VL−1 ◦ · · · ◦ σ1 ◦ V1)(x). (2.1)

Here L is the depth of the network (the number of layers after the input layer) and Vℓ(x) =
Aℓ(x)+ bℓ are af�ne linear operators between Banach spaces Xℓ−1 and Xℓ−1/2; we take
X0 :=X. The operators Aℓ :Xℓ−1→ Xℓ−1/2 are the linear parts and bℓ ∈ Xℓ−1/2 the so-called
bias terms. The operatorsσℓ :Xℓ−1/2→ Xℓ are possibly non-linear and the functionalsψ :XL→
[0,∞] are possibly non-convex.Note that we use two different spacesXℓ−1 andXℓ−1/2 in each
layer because common operations in networks like max-pooling, downsampling or upsampling
change the domain space.

As common in machine learning, the af�ne mappings Vℓ depend on free parameters
that can be adjusted in the training phase, whereas the non-linearities σℓ are �xed. There-
fore Vℓ and σℓ are treated separately and only the af�ne part V = (Vℓ)Lℓ=1 is indicated in
the notion of the neural network regularizer R(V, ·). Throughout our theoretical analysis
we assume R(V, ·) to be given and all free parameters to be trained before the minimiza-
tion of (1.3). In section 4, we present a possible framework for training a neural network
regularizer.

Remark 2.1 (CNNs in Banach space setting). A typical instance for the neural net-
work in NETT (1.2), is a deep convolutional neural network (CNN). In a possible in�nite
dimensional setting, such CNNs can be written in the form (2.1), where the involved spaces
satisfy Xℓ := ℓp(Λℓ,Xℓ) and Xℓ−1/2 := ℓp(Λℓ,Xℓ−1/2) with p ≥ 1, Xℓ and Xℓ−1/2 being func-
tion spaces, and Λℓ being an at most countable set that speci�es the number of different
�lters (depth) of the ℓth layer. The linear operators Aℓ : ℓp(Λℓ−1,Xℓ−1)→ ℓp(Λℓ,Xℓ−1/2) are
taken as

∀x ∈ ℓp(Λℓ−1,Xℓ−1) ∀ℓ ∈ Λℓ : Aℓ(x) =





∑

µ∈Λℓ−1

K
(ℓ)
λ,µ(xµ)





λ∈Λℓ

, (2.2)

where K(ℓ)
λ,µ :Xℓ−1→ Xℓ−1/2 are convolution operators.

5
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We point out, that in the existingmachine learning literature, only �nite dimensional settings
have been considered so far, whereXℓ andXℓ−1/2 are �nite dimensional spaces. In such a �nite

dimensional setting, we can take Xℓ = R
Nℓ1×N

ℓ
2 , and Λℓ as a set with Nℓ

c elements. One then can

identify Xℓ = ℓp(Λℓ,Xℓ) ≃ R
Nℓ1×N

ℓ
2×N

ℓ
c and interpreted its elements as stack of discrete images

(the same holds for Xℓ−1/2). In typical CNNs, either the dimensions Nℓ
1 × Nℓ

2 of the base space
Xℓ are progressively reduced and number of channelsNℓ

c increased, or vice versa. While we are
not aware of any in�nite dimensional general formulation of CNNs, our proposed formulation
(2.1), (2.2) is the natural in�nite-dimensional Banach space version of CNNs, which reduces
to standard CNNs [20] in the �nite dimensional setting.

Basic convex regularizers are sparse ℓq-penalties R(V, x) = ∑

λ∈Λvλ|〈ϕλ, x〉|
q. In this

case one may take (2.1) as a single-layer neural network with X1 = ℓ2(Λ1,R), σ = Id and
Φ(V, x) = V(x) = (〈ϕλ, x〉)λ being the analysis operator to some frame (ϕλ)λ∈Λ. The func-
tional ψ(x) =

∑

λ∈Λvλ|xλ|
q is a weighted ℓq-norm. The frame (ϕλ)λ∈Λ may be a prescribed

wavelet or curvelet basis [11, 16, 37] or a trained dictionary [3, 25]. In section 3.4, we
analyze a non-linear version of ℓq-regularization, where 〈φλ, ·〉 are replaced by non-linear
functionals. In this case the resulting regularizer will in general be non-convex even if
q ≥ 1.

2.2. Well-posedness and weak convergence

For the convergence analysis of NETT regularization, we use the following assumptions on
the regularizer and the data consistency term in (1.3).

Condition 2.2 (Convergence of NETT regularization).

(a) Network regularizerR:
1 The regularizerR(V, ·) is de�ned by (1.2) and (2.1)
2 Vℓ :Xℓ−1→ Xℓ−1/2 are af�ne operators of the form Vℓ(x) = Aℓx+ bℓ;

3 Aℓ are bounded linear;

4 σℓ are weakly continuous;

5 The functional ψ is weakly lower semi-continuous.

(b) Data consistency term D:
1 For some τ ≥ 1 we have ∀y0, y1, y2 ∈ Y :D(y0, y1) ≤ τD(y0, y2)+ τD(y2, y1);
2 ∀y0, y1 ∈ Y :D(y0, y1) = 0 ⇐⇒ y0 = y1;

3 ∀(yk)k∈N ∈ YN : yk→ y =⇒ D(yk, y)→ 0;

4 The functional (x, y) 7→ D(F(x), y) is sequentially lower semi-continuous.

(c) Coercivity condition:
R(V, ·) is coercive, that isR(V, x)→∞ as ‖x‖ →∞.

The conditions in (a) guarantees the lower semicontinuity of the regularizer. The conditions in
(b) for the data consistency term are not very restrictive and, for example, are satis�ed for the
squared norm distance. The coercivity condition (c) might be the most restrictive condition.
Several strategies how it can be obtained are discussed in the following.

Remark 2.3 (Coercivity via skip or residual connections). Coercivity (c) clearly holds for
regularizers of the form

R(V, ·) = R(1)(V, ·)+ ψ(2)(x), (2.3)

6
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where R(1)(V, ·) is a trained regularizer as in (a) and ψ(2) is coercive and weakly lower semi-
continuous.The regularizer (2.3) �ts to our general framework and results from a network using
a skip connection between the input and the output layer. In this case, the overall network takes
the formΦ(V, x) = [Φ(1)(V, x), x] whereΦ(1)(V, x) is of the form (2.1).

Another possibility to obtain coercivity is to use a residual connection in the network
structure which results in a regularizer of the form

R(V, x) = ψ
(

Φ
(r)(V, x)− x

)

. (2.4)

If the last non-linearity σℓ in the network Φ
(r)(V, x) is a bounded function and the functional

ψ is coercive, then the resulting regularizer is coercive. Coercivity also holds if Φ(r)(V, x) has
Lipschitz constant< 1, which can be achieved by appropriate training [7].

Remark 2.4 (Layer-wise coercivity). A set of speci�c conditions that implies coercivity of
the regularizer is to assume that, for all ℓ, the activation functions σℓ are coercive and there
exists cℓ ∈ [0,∞) such that ∀x ∈ X : ‖x‖ ≤ cℓ ‖Aℓx‖. The coercivity of Aℓ can be obtained by
including a skip connection, in which case the operator Aℓ takes the form Aℓ(x) = [A(1)

ℓ (x), x],
where Aℓ is bounded linear.

In CNNs, the spaces Xℓ and Xℓ−1/2 are function spaces (see remark 2.1) and a standard
operation for σℓ is the ReLU (the recti�ed linear unit), ReLU(x) := max {x, 0}, that is applied
component-wise. The plain form of the ReLU is not coercive. However, the slight modi�cation
x 7→ max {x, ax} for some a ∈ (0, 1), named leaky ReLU, is coercive, see [29, 36]. Another
coercive standard operation for σℓ in CNNs is max pooling which takes the maximum value
max {|x(i)| : i ∈ Ik} within clusters of transform coef�cients. We emphasize however that by
using one of the strategies described in remark 2.3, one can use any common activation function
without worrying about its coercivity.

Remark 2.5 (Generalization of the coercivity condition). The results derived below also
hold under the following weaker alternative to the coercivity condition (c) in condition 2.2:

(c′) For all y ∈ Y and α > 0, there exists a C > 0 such that

{x ∈ X | D(F(x), y)+ αR(V, x) ≤ C} is nonempty and bounded inX.

(2.5)

Condition (c′) ensures that the level set in (2.5) is sequentially weakly pre-compact
for all y ∈ Y and α > 0. It is indeed weaker than Condition (c). For instance, in case
that F is linear and D(·, 0) is convex, (c′) amounts to require that R(V, ·) is coer-
cive on the null space of F, whereas (c) requires coercivity of R(V, ·) on the whole
space X.

Now we are ready to show that NETT provides a convergent regularization method.

Theorem 2.6 (Well-posedness and convergence of NETT-regularization). Let condition 2.2
be satis�ed. Then the following assertions hold true:

(a) Existence: for all y ∈ Y and α > 0, there exists a minimizer of Tα;y.
(b) Stability: if yk→ y and xk ∈ argminTα ; yk , then weak accumulation points of (xk)k∈N exist

and are minimizers of Tα;y.
(c) Convergence: let x ∈ X, y :=F(x), (yk)k∈N satisfy D(yk, y),D(y, yk) ≤ δk for some

sequence (δk)k∈N ∈ (0,∞)N with δk→ 0, suppose xk ∈ arg minxTα(δk ), yk (x) and let the
parameter choice α : (0,∞)→ (0,∞) satisfy

7
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lim
δ→0

α(δ) = lim
δ→0

δ

α(δ)
= 0. (2.6)

Then the following holds:

1 Weak accumulation points of (xk)k∈N areR(V, ·)-minimizing solutions of F(x) = y.

2 (xk)k∈N has at least one weak accumulation point x+.

3 Any subsequence (xk(n))n∈N weakly converging to x+ satis�esR(V, xk(n))→R(V, x+).
4 If theR(V, ·)-minimizing solution of F(x) = y is unique, then xk ⇀ x+.

Proof. According to [21, 45] it is suf�cient to show that the functional R(V, ·) is weakly
sequentially lower semi-continuous and the set {x | Tα;y(x) ≤ t} is sequentially weakly pre-
compact for all t > 0 and y ∈ Y and α > 0. By the Banach–Alaoglu theorem, the latter condi-
tion is satis�ed ifR(V, ·) is coercive. The coercivity ofR(V, ·) however is assumed in condition
2.2 (for suf�cient coercivity conditions see remarks 2.3 and 2.4). Also from condition 2.2 it
follows thatR(V, ·) is sequentially lower semi-continuous. �

Note that the convergenceand stability results of theorem 2.6 are valid for any data indepen-
dent of the training data used for optimizing the network regularizer. Clearly, if the considered
inverse problem is under-determined, aR(V, ·)-minimizing solutions is not necessarily the one
corresponding to the desired signal class for test data very different from this class.

2.3. Absolute Bregman distance and total non-linearity

For convex regularizers, the notion of Bregman distance is a powerful concept [8, 45]. For
non-convex regularizers, the standard de�nition of the Bregman distance takes negative val-
ues. In this paper, we therefore use the notion of absolute Bregman distance. To the best of
our knowledge, the absolute Bregman distance has not been used in regularization theory
so far.

Definition 2.7 (Absolute Bregman distance). LetF :D ⊆ X→ R be Gâteaux differentiable
at x ∈ X. The absolute Bregman distanceBF (·, x) :D→ [0,∞] with respect toF at x is de�ned
by

∀x̃ ∈ X : BF (x̃, x) := |F (x̃)−F (x)−F ′(x)(x̃− x)| . (2.7)

Here F ′(x) denotes the Gâteaux derivative of F at x.

From theorem 2.6 we can conclude convergence of xα,δ to the exact solution in the absolute
Bregman distance. Below we show that this implies strong convergence under some additional
assumption on the regularization functional. For this purpose we introduce the new total non-
linearity, which has not been studied before.

Definition 2.8 (Total non-linearity). Let F :D ⊆ X→ R be Gâteaux differentiable at
x ∈ D. We de�ne the modulus of total non-linearity of F at x as νF (x, ·) :[0,∞)→ [0,∞]:

∀t > 0 : νF (x, t) := inf {BF (x̃, x) | x̃ ∈ D ∧ ‖x̃− x‖ = t} . (2.8)

The function F is called totally non-linear at x if νF (x, t) > 0 for all t ∈ (0,∞).

The notion of total non-linearity is similar to total convexity [10] for convex functionals.
Opposed to total convexity we do not assume convexity of F , and use the absolute Bregman
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distance instead of the standard Bregman distance. For convex functions, the total non-linearity
reduces to total convexity, as the Bregman distance is always non-negative for convex func-
tionals. For aGâteaux differentiable convex function, the total non-linearity essentially requires
that its second derivative at x is bounded away from zero. The functionalF (x) :=

∑

λ∈Λvλ|xλ|
q

with vλ > 0 is totally non-linear at every x = (xλ)λ∈Λ ∈ ℓ∞(Λ) if q > 1.
We have the following result, which generalizes [42, proposition 2.2] (see also [45,

theorem 3.49]) from the convex to the non-convex case.

Proposition 2.9 (Characterization of total non-linearity). For F :D ⊆ X→ R and any

x ∈ D the following assertions are equivalent:

(a) The function F is totally non-linear at x;

(b) ∀(xn)n∈N ⊆ DN : (limn→∞BF (xn, x) = 0 ∧ (xn)n bounded)⇒ limn→∞ ‖xn − x‖ = 0.

Proof. The proof of the implication (b) ⇒ (a) is the same as [42, proposition 2.2]. For
the implication (a) ⇒ (b), let (a) hold, let (xn)n∈N ⊆ DN satisfy BF (xn, x)→ 0, and suppose
limn→∞ ‖xn − x‖ = δ > 0 for the moment. For any ε > 0, by the continuity of BF (·, x), there
exist x̃n with ‖x̃n − x‖ = δ such that for suf�ciently large n

ε ≥ BF (xn, x)+
ε

2
≥ BF (x̃n, x) ≥ νF (x, δ).

This leads to νF (x, δ) = 0, which contradicts with the total non-linearity of F at x. Then, the
assertion follows by considering subsequences of (xn)n∈N. �

Remark 2.10. We point out that proposition 2.9 remains true, if we replace the absolute
value |·| :R→ [0,∞] in (2.7) by the ReLU function, the leaky ReLU function, or any other
nonnegative continuous function φ :R→ [0,∞] that satis�es φ(0) = 0.

2.4. Strong convergence of NETT regularization

For totally non-linear regularizersR(V, ·) we can prove convergence of NETT with respect to
the norm topology.

Theorem 2.11 (Strong convergence of NETT). Let condition 2.2 hold and assume addi-
tionally that F(x) = y has a solution,R(V, ·) is totally non-linear atR(V, ·)-minimizing solu-
tions, and α satis�es (2.6). Then for every sequence (yk)k∈N with D(yk, y),D(y, yk) ≤ δk where
δk→ 0 and every sequence xk ∈ arg minxTα(δk ), yk (x) there exist a subsequence (xk(n))n∈N and
an R(V, ·)-minimizing solution x+ with ‖ xk(n) − x+‖→ 0. If the R(V, ·)-minimizing solution
is unique, then xk→ x+ with respect to the norm topology.

Proof. It follows from theorem 2.6 that there exists a subsequence (xk(n))n∈N weakly con-
verging to some R(V, ·)-minimizing solution x+ such that R(V, xk(n))→R(V, x+). From
the weak convergence of (xk(n))n∈N and the convergence of (R(V, xk(n)))n∈N it follows that
BR(V, · )(xk(n), x+)→ 0. Thus it follows from proposition 2.9, that ‖ xk(n) − x+‖→ 0. If x+ is
the uniqueR-minimizing solution, the strong convergence to x+ again follows from theorem
2.6 and proposition 2.9. �

3. Convergence rates

In this section, we derive convergence rates for NETT in terms of general error measures under
certain variational inequalities. Throughout we denote by δ > 0 the noise level and α > 0
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the regularization parameter. We discuss instances where the variational inequality is satis�ed
for the absolute Bregman distance. Additionally, we consider a non-linear generalization of
ℓq-regularization.

3.1. General convergence rates result

We study convergence rates in terms of a general functional E :X × X→ [0,∞] measuring
closeness in the space X. For convexΨ : [0,∞)→ [0,∞), let Ψ∗ : R→ R denote the Fenchel
conjugate of Ψ de�ned by Ψ∗(τ ) := sup {τ t −Ψ(t) | t ≥ 0}.

Theorem 3.1 (Convergence rates for NETT). Suppose E :X × X→ [0,∞], let x+ ∈ D
and assume that there exist a concave, continuous and strictly increasing function

Φ : [0,∞)→ [0,∞) with Φ(0) = 0 and a constant β > 0 such that for all ε > 0 and x ∈ D
with |R(V, x)−R(V, x+)| < ε we have

βE(x, x+) ≤ R(V, x)−R(V, x+)+Φ(D(F(x),F(x+))). (3.1)

Additionally, let condition 2.2 hold, let yδ ∈ Y and δ > 0 satisfy D(y, yδ),D(yδ, y) ≤ δ and
write Φ−∗ for the Fenchel conjugate of the inverse functionΦ−1. Then the following assertions
hold true:

(a) For suf�ciently small α and δ, we have

∀xα,δ ∈ arg minTα;yδ : βE(xα,δ , x+) ≤
δ

α
+Φ(τδ)+

Φ
−∗(τα)

τα
. (3.2)

(b) If α ∼ δ/Φ(τδ), then E(xα,δ, x+) = O (Φ(τδ)) as δ→ 0.

Proof.

(a) By theorem 2.6(c), we can assume that |R(V, ·)(xα,δ)−R(V, x+)| ≤ ε. From the
de�nition of xα,δ it follows that D(F(xα,δ), yδ)+ αR(V, ·)(xα,δ) ≤ D(F(x+), yδ)+
αR(V, x+). Then from (3.1) we obtain

αβE(xα,δ , x+) ≤ δ −D(F(xα,δ), yδ)+ αΦ(D(F(xα,δ),F(x+)))
≤ δ −D(F(xα,δ), yδ)+ αΦ(τδ + τD(F(xα,δ), yδ))
≤ δ −D(F(xα,δ), yδ)+ αΦ(τδ)+ αΦ(τD(F(xα,δ), yδ))

≤ δ + αΦ(τδ)+ τ−1Φ−∗(τα).

The last estimate is an application of Young’s inequality αΦ(τ t) ≤ t+ τ−1Φ−∗(τα).

(b) Elementary computations show lim supδ→0Φ
−∗(τδ/Φ(τδ))/δ <∞, such that the right

hand side of (3.2) is bounded by Φ(τδ) up to a constant if α ∼ δ/Φ(τδ). �

Remark 3.2. If Φ(t) ≤ Ct for suf�ciently small t, then from (3.2) it follows that βE(xα,δ , x)
≤ δ/α+ Cτδ = O(δ) if α ≤ 1/C. This says that the regularization parameter α needs not to
vanish for δ→ 0, which is often referred to as exact penalization (for the convex case, see the
discussions in [8, 45]).
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3.2. Rates in the absolute Bregman distance

We next derive conditions under which a variational inequality in form of (3.1) is possible for
the absolute Bregman distance as error measure, E(x, x+) :=BR(V, · )(x, x+).

Proposition 3.3 (Rates in the absolute Bregman distance). Let X and Y be Hilbert spaces

and let F:X→ Y be a bounded linear operator. Assume thatR(V, ·) is Gâteaux differentiable,
thatR′(V, x+) ∈ Ran(F∗), and that there exist positive constants γ, ε with

R(V, x+)−R(V, x) ≤ γ‖F(x)− F(x+)‖ (3.3)

for all x satisfying |R(V, x)−R(V, x+)| < ε. Then,

BR(V, · )(x, x+)≤R(V, x)−R(V, x+)+C‖F(x)−F(x+)‖ for some constantC.

In particular, for the similarity measure D(z, y) = ‖z− y‖2 and under condition 2.2, items a
and b of theorem 3.1 hold true.

Proof. Let ξ satisfy that R′(V, x+) = F
∗ξ. Then |〈R′(V, x+), x− x+〉| ≤ ‖ξ‖‖F(x)

− F(x+)‖. Note that |R(V, x)−R(V, x+)| = R(V, x)−R(V, x+) ifR(V, x) ≥ R(V, x+) and
|R(V, x)−R(V, x+)|=R(V, x)−R(V, x+)+ 2(R(V, x+)−R(V, x))≤R(V, x)−R(V, x+)
+ 2γ‖F(x)− F(x+)‖ otherwise. This yields

BR(V, · )(x, x+) ≤ |R(V, x)−R(V, x+)|+ |〈R′(V, x+), x− x+〉|
≤ R(V, x)−R(V, x+)+ C‖F(x)− F(x+)‖

with the constant C := ‖ξ‖+ 2γ, and concludes the proof. �

Remark 3.4. Proposition 3.3 shows that a variational inequality of the form (3.1) with β = 1
andΦ(t) = C

√
t follows from a classical source conditionR′(x+) ∈ Ran(F∗). By theorem 3.1,

it further implies that BR(V, · )(xα,δ , x+) = O(δ) if ‖ y− yδ ‖≤ δ. Moreover, we point out that
the additional assumption (3.3) is rather weak, and follows from the classical source con-
dition R′(x+) ∈ Ran(F∗) if R is convex, see [22]. It is clear that a suf�cient condition to
(3.3) is

|R(V, x)−R(V, x+)− 〈R′(V, x+), x− x+〉| ≤ c|R(V, x)−R(V, x+)| for some c < 1,

which resembles a tangential-cone condition. Choosing the squared Hilbert space norm for the
similarity measure, D(z, y) = ‖z− y‖2, the error estimate (3.2) takes the form

∀xα,δ ∈ argminTα;yδ : BR(V, · )(xα,δ, x+) ≤
δ

α
+ C
√
δ +

C4

4
α. (3.4)

In particular, choosing α ∼
√
δ yields the convergence rate BR(V, · )(xα,δ, x+) = O(

√
δ).

3.3. General regularizers

So far we derived well-posedness, convergence and convergence rates for regularizers of the
form (1.2). These results can be generalized to Tikhonov regularization
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Tα;yδ (x) :=D(F(x), yδ)+ αR(x)→min
x
, (3.5)

where the regularization term is not necessarily de�ned by a neural network. These results are
derived by replacing condition 2.2 with the following one.

Condition 3.5 (Convergence for general regularizers).

(a) The functionalR is sequentially lower semi-continuous.

(b) The set {x | Tα;y(x) ≤ t} is sequentially pre-compact for all t, y and α > 0.

(c) The data consistency term satis�es (b).

Then we have the following:

Theorem 3.6 (Results for general Tikhonov regularization). Under condition 3.5, general
Tikhonov regularization (3.5) satis�es the following:

(a) The conclusions from theorem 2.6 (well-posedness and convergence) hold true.

(b) If R is totally non-linear at R-minimizing solutions, the strong convergence from

theorem 2.11 holds.

(c) The convergence rates result from theorem 3.1 holds.

(d) If F is bounded linear, the assertions of proposition 3.3 hold forR.

Proof. All assertions are shown as in the special caseR = R(V, ·). �

Note that item (a) in the above theorem is contained in [21]. Items (b–d) have not been
obtained previously for non-convex regularizers.

3.4. Non-linear ℓq-regularization

We now analyze a special instance of NETT regularization (1.2), generalizing classical
ℓq-regularization by including non-linear transformations. More precisely, we consider the
following ℓq-Tikhonov functional

Tα,yδ (x) = ‖F(x)− yδ‖2 + α
∑

λ∈Λ
vλ|φλ(x)|q with q > 1. (3.6)

Here Λ is a countable set and φλ :X→ R are possibly non-linear functionals. Theorem 2.6
assures existence and convergence of minimizers of (3.6) provided that (φλ)λ∈Λ is coercive and
weakly continuous. If (φλ)λ∈Λ is non-linear, minimizers are not necessarily unique.

The regularizerR(x) :=∑

λ∈Λvλ|φλ(x)|
q is a particular instance of NETT (1.2), if we take

σL ◦ VL ◦ · · · ◦ σ1 ◦ V1 = (φλ)λ∈Λ, and ψ as a weighted ℓq-norm. However, in (3.6) also more
general choices for φλ are allowed (see condition 3.7).

We assume the following:

Condition 3.7.

(a) F :X→ Y is a bounded linear operator between Hilbert spaces X and Y.

(b) φλ :X→ R is Gâteaux differentiable for every λ ∈ Λ.

(c) There is aR(V, ·)-minimizing solution x+ withR′(V, x+) ∈ Ran(F∗).

(d) There exist constantsC, ε > 0 such that for all xwith |R(V, x)−R(V, x+)| ≤ ε, it holds
that

12
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∀λ ∈ Λ : sign(φλ(x+))(φλ(x+)− φλ(x)) ≤ C sign(φλ(x+))φ
′
λ(x+)(x+ − x).

Here sign(t) = 1 for t > 0, sign(t) = 0 for t = 0, and sign(t) = −1 otherwise.

Proposition 3.8. Let condition 3.7 hold, suppose that yδ ∈ Y is such that ‖y− yδ‖ ≤ δ, and
let xα,δ ∈ arg minTα,yδ . If choosing α ∼ δ, then BR(xα,δ , x+) = O(δ).

Proof. The convexity of t 7→ |t|q implies that

R(x+)−R(x) ≤
∑

λ∈Λ
vλ|φλ(x+)|q−1sign(φλ(x+))(φλ(x+)− φλ(x)).

By (d), we obtainR(x+)−R(x) ≤ C〈R′(x+), x+ − x〉. This together with (c) implies (3.3).
Thus, the assertion follows from proposition 3.3. �

Remark 3.9. Consider the case that φλ(x) := 〈ϕλ, x〉 for an orthonormal basis (ϕλ)λ∈Λ of X.
It is known that ‖x− x+‖2 = O

(

BR(V, · )(x, x+)
)

, see e.g. [45]. Then, proposition 3.8 gives

‖xα,δ − x+‖ = O(δ1/2), which reproduces the result of [45, theorem 3.54]. This rate can
be improved to O(δ1/q) if we further assume sparsity of x+ and restricted injectivity of F.
It can be shown by theorem 3.1 because in such a situation (3.1) holds with Φ(t) ∼

√
t and

E(x, x+) = ‖x− x+‖q, see [22] for details.

3.5. Comparison to the W-Bregman distance

Adifferent framework for deriving convergence rates for non-convex regularization functionals
is based on theW-Bregman distance introduced in [21, 24]. In this subsection we compare our
absolute Bregman distance with the W-Bregman for some speci�c examples.

Definition 3.10 (W-Bregman distance). Let W be a set of functions w :X→ R, R :X
→ [0,∞] be a functional and x+ ∈ X.

(a) R is calledW-convex at x+ ifR(x+) = supw∈W infx∈X(R(x)− w(x)+ w(x+)).

(b) Let R be W-convex at x+. The W-subdifferential of R at x+ is de�ned by
∂WR(x+) := {w ∈ W | ∀x ∈ X :R(x) ≥ R(x+)+ w(x)− w(x+)}. Moreover, the W-
Bregman distance with respect to w ∈ ∂WR(x+) between x+ and x ∈ X is de�ned by

BwR,W(x, x+) :=R(x)−R(x+)− w(x)+ w(x+).

The notion of W-Bregman distance reduces to its classical counterpart if we take W as the set
of all bounded linear functionals on X. Allowing more general function sets W provides an
extension of the Bregman distance to non-convex functionals that can be used as an alterative
approach to convergence rates. It, however, requires �nding a suitable function set such thatR
isW-convex at x+.

Relations between the absolute Bregman distance and theW-Bregman distance depends on
the particular choice ofW. We illustrate this by an example.

Example 3.11. Consider the functionalR(x) :=
(

2ReLU(x− x+)− 1
)

|x− x+|q for x ∈ R

with q > 1. The absolute Bregman distance according to de�nition 2.7 is given byBR(x, x+) =
|x− x+|q. For the W-Bregman distance consider the family W := {wα,β :R→ R | α, β ∈ R}
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where wα,β(x) :=α(x− x+)− β|x− x+|q. Then R is locally convex at x+ with respect to W.
Moreover, wα,β ∈ ∂WR(x+) if α = 0 and β ≥ 1. For w0,β ∈ ∂WR(x+), it follows that

Bw0,βR,W(x, x+) =
{

(β + 1)|x− x+|q if x ≥ x+

(β − 1)|x− x+|q otherwise.

In case of q = 2, the W-subdifferential is closely related to the notion of proximal subdiffer-
entiability used in [14].

If β > 1, then Bw0,βR,W(·, x+) and BR(·, x+) only differ in terms of the front constants. As
a consequence, the rates with respect to both Bregman distances will be of the same order.
However, if β = 1, then Bw0,1R,W(·, x+) equals 0 when x ≤ x+. In contrast,BR(·, x+) always treats
both x ≥ x+ and x ≤ x+ equally.

We conclude that the relation between the absolute Bregman distance and the W-Bregman
distance depends on the particular situation and the choice of the family W. Using the
W-Bregman distance for the analysis of NETT and studying relations between the two gen-
eralized Bregman distances are interesting lines of research that we aim to address in future
work.

4. A data driven regularizer for NETT

In this section we present a framework for constructing a trained neural network regular-
izer R(V, ·) of the form (2.1). Additionally, we develop a strategy for network training and
minimizing the NETT functional.

4.1. A trained regularizer

For the regularizer we propose R(V, ·) =
∑

λ∈ΛL
‖Φλ(V, x)‖qq with a network Φ(V, ·) =

(Φλ(V, ·))λ∈Λ of the form (2.1), that itself is part of encoder-decoder type network:

Ψ(W, ·) ◦Φ(V, ·) :X→ X. (4.1)

HereΦ(V, ·) :X→ XL can be interpreted as encoding network andΨ :XL→ X as decoding
network. We note, however, that any network with at least one hidden layer can be written in
the form (4.1). Moreover we also allow XL to be of large dimension in which case the encoder
Φ(V, ·) does not perform any form of dimensionality reduction or compression.

Training of the network is performed such thatR(V, ·) is small for artifact free images and
large for images with artifacts. The proposed training strategy is presented below.

For suitable network training of the encoder–decoder scheme (4.1), we propose the
following strategy (compare �gure 1). We choose a set of training phantoms zn ∈ X for
n = 1, . . . ,N1 + N2 from which we construct back-projection images xn :=F

+(Fzn) for the
�rst N1 training examples, and set xn = zn for the last N2 training images. Here F+ denotes any
(approximate) right inverse of F, such as the pseudo-inverse in the linear case. From this we
de�ne the training data {(xn, rn)}N1+N2n=1 , where

∀n = 1, . . . ,N1 : rn = zn − xn = zn − F
+(Fzn) (4.2)

∀n = N1 + 1, . . . ,N1 + N2 : rn = zn − xn = 0. (4.3)
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Figure 1. Encoder-decoder scheme and proposed training strategy. The network consists
of the encoder partΦ(V, ·) and decoder partΨ(W, ·), and is trained to map any potential
solution x to the corresponding artifact part. The norm of Φ(V, x) is used as trained
regularizer.

The free parameters in (4.1) are adjusted in such a way, that Ψ(W,Φ(V, xn)) ≃ rn for any
training pair (xn, rn). This is achieved by minimizing the error function

EN(V,W) :=
N1+N2
∑

n=1

ℓ(Ψ(W,Φ(V, xn)), rn), (4.4)

where ℓ is a suitable distance measure (or loss function) that quanti�es the error made by the
network function on the nth training sample. Typical choices for d are mean absolute error or
mean squared error.

Given an arbitrary unknown x ∈ X, the trained network estimates the artifact part. As a
consequence, R(V, x) is expected to be large, if x contains severe artifacts and small if it
is almost artifact free. If x is similar to elements in the training set, this should produce
almost artifact free results with NETT regularization. Even if the true unknown is of dif-
ferent type from the training data, artifacts as well as noise will have large value of the
regularizer. Thus our approach is applicable for a wider range of images apart from train-
ing ones. This claim is con�rmed by our numerical results in section 5. Note that we did
not explicitly account for the coercivity condition during the training phase. Several pos-
sibilities for ensuring coercivity are discussed in section 2.2. Moreover, note that the class
of methods we have in mind for the above training strategy are underdetermined problems
such as undersampled CT, MRI or PAT. We expect that similar training strategies can be
designed for problems that have many small but not vanishing singular values. Investigat-
ing such issues in more detail (theoretically and numerically) is an interesting line of future
research.

Remark 4.1 (Alternative trained regularizers). Another natural choice would be to simply
takeR(W,V, x) := ‖Ψ(W,Φ(V, x))‖2 for the regularizer. Such a regularizer has been used in
the proceedings [6] combined with quite simple network architectures forΨ andΦ. The main
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Algorithm 1. Incremental gradient descent for minimizing NETT.

Choose family of step-sizes (si) > 0
Choose initial iterate x0
for i = 1 to maxiter do

x̄i← xi−1 − siF′(xi−1)∗(F(xi−1)− yδ) {gradient step for 1
2‖F(x)− yδ‖

2}
xi← x̄i − siα∇xR(V, ·)(x̄i) {gradient step for R(V, ·)}

end for

emphasis of this paper is the convergence analysis of NETT, so the investigation of the effects
of different trained regularizers is beyond its scope. We nevertheless point out that including
training data corresponding to (4.3) makes the trained network Ψ(W,Φ(V, x)) different to
standard artifact removal network [30], which only use training data corresponding to (4.2) to
remove artifacts. Detailed investigation of bene�ts of each approach is an interesting aspect of
future research.

4.2. Minimizing the NETT functional

Using the encoder–decoder scheme, regularized solutions are de�ned as minimizers of the
NETT functional

Tα;y(x) =
1

2
‖F(x)− yδ‖2 + α

∑

λ∈ΛL

‖Φλ(V, x)‖qq , (4.5)

where Φ is trained as above. The optimization problem (4.5) is non-convex (due to the pres-
ence of the non-linear network) and non-smooth. Note that the gradient of the regulariza-
tion term R(V, x) =

∑

λ∈ΛL
‖Φ(V, x)λ‖qq can be evaluated by standard software for network

training with the backpropagation algorithm. We therefore propose to use an incremental
gradient method for minimizing the Tikhonov functional (4.5), which alternates between
a gradient descent step for 1

2‖F(x)− yδ‖
2 and a gradient descent step for the regularizer

R(V, x).
The resulting minimization procedure is summarized in algorithm 1.
In practice,we found that algorithm1 gives favorable performance, and is stable with respect

to tuning parameters. Also other algorithms such as proximal gradientmethods [15] or Newton
type methods might be used for the minimization of (4.5). A detailed comparison with other
algorithms is beyond the scope of this article.

Note that the regularizer may be taken R(V, x) = ‖Φ(x)‖L with an arbitrary norm ‖·‖L on
XL. The concrete training procedure is described below. In the form (4.5), NETT constitutes a
non-linear generalization of ℓq-regularization.

5. Application to sparse data tomography

As a demonstration, we use NETT regularization with the encoder–decoder scheme presented
in section 4 to the sparse data problem in photoacoustic tomography (PAT). PAT is an emerg-
ing hybrid imaging method based on the conversion of light in sound, and bene�cially com-
bines the high contrast of optical imaging with the good resolution of ultrasound tomography
(see, for example, [33, 40, 49, 50]).
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5.1. Sparse sampling problem in PAT

The aim of PAT is to recover the initial pressure p0 :Rd→ R in the wave equation















∂2t p(x, t)−∆xp(x, t) = 0, for (x, t) ∈ R
d × (0,∞) ,

p (x, 0) = p0(x), for x ∈ R
d,

∂tp (x, 0) = 0, for x ∈ R
d.

(5.1)

form measurements of p made on an observation surface S outside the support of p0. Here d is
the spatial dimension, ∆x the spatial Laplacian, and ∂ t the derivative with respect to the time
variable t. Both cases d = 2, 3 for the spatial dimension are relevant in PAT: the case d = 3
corresponds to classical point-wise measurements; the case d = 2 to integrating line detectors
[9, 40]. In this paper we consider the case of d = 3 and assume the initial pressure p0 :R2→ R

vanishes outside the unit disc D1, the ball of radius 1, and that acoustic data are collected at the
boundary sphere S1 = ∂D1. In particular, we are interested in the sparse sampling case, where
data are only given for a small number of sensor locations on S1. This is the case that one often
faces in practical applications.

In the full sampling case, the discrete PAT forward operator is written as F :Rn1×n2

→ Rmfull×m2 where mfull corresponds to the number of complete spatial sampling points and
M2 to the number of temporal sampling points. Suf�cient sampling conditions for PAT in the
circular geometryhave been derived in [26].We discretize the exact inversion formula of [19] to
obtain an approximationF ♯ :Rmfull×m2 → Rn1×n2 to the inverse of F. In the full data case, appli-
cation ofF ♯ to dataFx ∈ Rmfull×m2 gives an almost artifact free reconstruction x ∈ Rn1×n2 , see
[26]. Note thatF ♯ is the discretization of the continuous adjoint ofF with respect to a weighted
L2-inner product (see [19]).

In the sparse sampling case, the PAT forward operator is given by

F = S ◦ F :X = R
n1×n2 → R

m1×m2 . (5.2)

Here S :Rmfull×m2 → Rm1×m2 is the subsampling operator, which restricts the full data in to a
small number of spatial sampling points. In the case of spatial under-sampling, the �ltered
backprojection (FBP) reconstruction F

♯ :=F ♯ ◦ ST yields typical streak-like under-sampling
artifacts (see, for example, the examples in �gure 2).

5.2. Implementation details

Consider NETTwhere the regularizer is de�ned by the encoder–decoder framework described
in section 4. The networkΨ(W, ·) ◦Φ(V, ·) is taken as the Unet, where theΦ(V, x) corresponds
to the output of the bottom layer with smallest image size and largest depth. The Unet has been
proposed in [44] for image segmentation and successfully applied to PAT in [5, 47]. However,
we point out, that any network that has the encoder–decoder of the form Ψ(W, ·) ◦Φ(V, ·)
can be used in an analogous manner.

The network was trained on a set of training pairs {(xn, rn)}N1+N2n=1 , with N1 = N2 = 975,
where exactly half of them contained under-sampling artifacts. For generating such train-
ing data we used (4.2), (4.3) where zn are taken as randomly generated piecewise constant
Shepp–Logan type phantoms. The Shepp–Logan type phantoms have position, angle, shape
and intensity of every ellipse chosen uniformly at random under the side constraints that the
support of every ellipse lies inside the unit disc and the intensity of the phantom is in the range
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Figure 2. Reconstruction results for a phantom of Shepp–Logan type. Top: Phantom x
(left) and corresponding FBP reconstruction (right); bottom: iterates x10 (left) and x50
(right) with the proposed algorithm for minimizing the NETT functional.

[0, 6]. During training we had no problems with over�tting or instability and thus we did not
use dropout or batch normalization. However, such techniques might be needed for different
networks or training sets.

In this discrete sparse sampling case, we take the forward operator F as in (5.2) with
n1 = n2 = 256 and m1 = 30 spatial samples distributed equidistantly on the boundary circle.
We usedm2 = 2000 times sampled evenly in the interval [0, 2. 5]. The under-sampling problem
in PAT is solved by FBP, and NETT regularization using α = 1/4. We minimize (4.5) using
algorithm 1, where we chose a constant step size of si = 0. 4 and take the zero image x0 = 0
for the initial guess. These parameters have been selected by hand using similar phantoms as
reference.

5.3. Results and discussion

The top left image in �gure 2 shows a Shepp–Logan type phantom x ∈ R256×256 correspond-
ing to a function on the domain [−1, 1]2. It is of the same type as the training data, but is not
contained in the training data. The NETT reconstruction x10 and x50 with algorithm 1 after 10
and 50 iterations for the Shepp–Logan type phantom are shown in the bottom row of �gure 2.
The top right image �gure 2 shows the reconstruction xFBP = F

♯
Fx with the FBP algorithm

of [19]. The relative L2-errors E(z) := ‖x− z‖2/‖x‖2 of the iterates for the Shepp–Logan
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Figure 3. Reconstruction results for phantoms of different type from training data.
Top: phantom with smooth blobs (left), corresponding FBP reconstruction (middle) and
NETT reconstruction with the proposed algorithm for minimizing the NETT functional.
Bottom: same for another phantom.

type phantom are E(x10) = 0. 262 and E(x50) = 0. 192, whereas the relative error of the FBP
reconstruction is E(xFBP) = 0. 338. From �gure 2 one recognizes that NETT is able to well
remove under-sampling artifacts while preserving high resolution information.

We also consider a phantom image (blobs phantom) that additionally includes smooth parts
and is of different type from the phantoms used for training. The blobs phantom as well as
the FBP reconstruction xFBP and NETT reconstructions x10 and x50 are shown in the top row
of �gure 3. Again, for this phantom different from the training set, NETT removes under-
sampling artifacts and at the same time preserves high resolution. Results for another phan-
tom of different type from training data are shown in the bottom row of �gure 3. Finally,
�gure 4 shows reconstruction results with NETT from noisy data where we added 5% addi-
tive Gaussian noise to the data. We performed 15 iterations with algorithm 1. Parameters
have been taken as in the noiseless data case. We also calculated the average relative L2-
error and average structured similarity index (SSIM) of [52] on a test set of 50 phantoms,
which were similar to the training set. The errors for both the noiseless and noisy case can be
seen in table 1. We used the same parameters as above for both the noiseless and the noisy
case.

In all cases, the reconstructions are free from under-sampling artifacts and contain high
frequency information, which demonstrates the applicability of NETT for noisy data as well.
The above results demonstrate the proposed NETT regularization using the encoder–decoder
framework and with algorithm 1 for minimization is able to remove under-sampling arti-
facts. It also gives consistent results even on images with smooth structures not contained in
the training data. This shows that in the NETT framework, learning the regularization func-
tional on one class of training data, can lead to good results even for images beyond that
class.

We �nally note that the NETT reconstructions contain negative values even if the network is
trained on non-negativephantoms only. This comes from the fact that the network regularizer in
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Figure 4. Reconstruction results from noisy data using NETT with 15 iterations. Left:
Shepp–Logan phantom; right: blobs phantom.

Table 1. Average error measures for reconstruction
from noisy data from on the test set using FBP and
NETT using 20 iterations.

FBP NETT

Relative L2 0.834 0.198
SSIM 0.261 0.502

(4.5) does not impose any hard constraint but enforces similarity to the training data instead. In
order to obtain nonnegative reconstruction results, one can add positivity as an additional con-
straint to the NETT functional. Formally, this is obtained by using

∑

λ∈ΛL
‖Φλ(V, x)‖qq + i+(x)

as regularizer in (4.5). Here the additional term i+ in the regularizer denotes the indicator func-
tion of the cone of nonnegative elements, de�ned by i+(x) = 0 if all entries of x are nonnegative
and i+(x) =∞ otherwise. Clearly one can add further terms to the regularizers, such as a TV
or a smoothness penalty. Numerical investigations of such procedures are beyond the scope of
this paper.

6. Conclusion and outlook

In this paper we developed a new framework for the solution of inverse problems via NETT
(1.3). We presented a complete convergence analysis and derived well-posedness and weak
convergence (theorem 2.6), norm-convergence (theorem 2.11), as well as various convergence
rates results (see section 3). For these results we introduced the absolute Bregman distance
as a new generalization of the standard Bregman distance from the convex to the non-convex
setting. NETT combines deep neural networks with a Tikhonov regularization strategy. The
regularizer is de�ned by a network that might be a user-speci�ed function (generalizing frame
based regularization), or might be a CNN trained on an appropriate training data set. We have
developed a possible strategy for learning a deep CNN (using an encoder–decoder frame-
work, see section 4). Initial numerical results for a sparse data problem in PAT (see section 5)
demonstrated thatNETTwith the trained regularizerworkswell and also yields good results for
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phantoms different from the class of training data. This may be a result of the fact, that opposed
to other deep learning approaches for image reconstruction, the NETT includes a data consis-
tency term as well as the trained network that focuses on identifying artifacts. Detailed compar-
ison with other deep learningmethods for inverse problems as well as variational regularization
methods (including TV-minimization) is subject of future studies.

Many possible lines of future research arise from the proposed NETT regularization and
the corresponding network-minimizing solution concept (1.5). For example, instead of the
Tikhonov variant (1.3) one can employ and analyze the residual method (or Ivanov regular-
ization) for approximating (1.5), see [24]. Instead of the simple incremental gradient descent
algorithm (cf. algorithm 1) for minimizing NETT one could investigate different algorithms
such as proximal gradient or semi-smooth Newton methods. Studying network designs and
training strategies different from the encoder–decoder scheme is a promising aspect of future
studies. Finally, application of NETT to other inverse problems is another interesting research
direction.
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