

Topics in Numerical Analysis II Computational Inverse Problems

Lecturer: Bangti Jin (btjin@math.cuhk.edu.hk)

Chinese University of Hong Kong

October 12, 2022

Outline

1 Iterative regularization

Review

Nonlinear inverse problems

$$F(x) = y$$

with $F: X \to Y$ being nonlinear operator (possibly compact) between Hilbert spaces X and Y

- (i) F is continuous
- (ii) F is weakly sequentially closed, i.e., $(x_n) \subset D(F)$, weak convergence of x_n to x^* and weak convergence of $F(x_n)$ to $F(x^*)$ in Y imply $x^* \in X$ and $F(x^*) \in Y$
 - electrical impedance tomography
 - diffuse optical tomography
 - inverse scattering

Tikhonov regularization

$$J_{\alpha}(x) = ||F(x) - y||^2 + \alpha ||x||^2$$

and approximation x_{α}

$$x_{\alpha} \in \arg\min_{x \in D(F)} J_{\alpha}(x)$$

- existence of a global minimizer, not unique
- stability of the approximation (on subsequence)
- \blacksquare consistency of the approximation as $\delta \to 0$ (subseq.)
- convergence rate

Convergence rate analysis Engl-Kunisch-Neubauer Inverse Problems 1989

Let D(F) be **convex**, $y^{\delta} \in Y$ with $||y^{\delta} - y^{\dagger}|| \leq \delta$, and x^{\dagger} be an x_0 -minimum norm solution. Moreover, the following condition holds

- (i) F is Frechet differentiable.
- (ii) $\exists \ L > 0 \text{ s.t. } \|F'(x^{\dagger}) F'(z)\| \le L\|x^{\dagger} z\| \text{ for all } z \in D(F)$
- (iii) $\exists w \in Y \text{ s.t. } x^{\dagger} x_0 = F'(x^{\dagger})^* w \text{ and } L||w|| < 1.$

Then with $\alpha \sim O(\delta)$, we have

$$\|\mathbf{x}_{\alpha}^{\delta}-\mathbf{x}^{\dagger}\|=O(\delta^{\frac{1}{2}}).$$

the same result holds for discrepancy principle

Model problem

Most inverse problems for PDEs are nonlinear in nature model problem:

$$-\Delta u + qu = f$$
 in Ω , $u = 0$ on $\partial \Omega$,

with given $q \in L^{\infty}(\Omega)$, $q \ge 0$, and $f \in L^{2}(\Omega)$

- The forward is well-posed: there exists a unique solution $u \in H_0^1(\Omega)$ (by Lax-Milgram theorem)
- Inverse problem: given $g \approx u^{\delta}$ in Ω , find q
- The operator $F(q): q \mapsto u(q)$ is weakly continuous from $L^2(\Omega)$ to $L^2(\Omega)$.
- The operator F is differentiable from $L^2(\Omega)$ to $L^2(\Omega)$
- $q^{\dagger} = F'(q^{\dagger})^* w = -u(q^{\dagger}) A(q^{\dagger})^{-1} w, \text{ with } w \in L^2(\Omega), \text{ i.e.,}$ $\frac{q^{\dagger}}{u(q^{\dagger})} \in H_0^1(\Omega) \cap H^2(\Omega)$

discrete Tikhonov regularization

$$\min_{q_h \in \mathcal{A}_h} \{J_{\alpha,h}(q_h) = \tfrac{1}{2} \| F_h(q_h) - g \|_{L^2(\Omega)}^2 + \tfrac{\alpha}{2} \| q_h \|_{L^2(\Omega)}^2 \}$$

with $F_h(q_h)$ the FEM solution

- lacksquare the discrete problem has a solution $q_h^* \in \mathcal{A}_h$
- convergence as $h \rightarrow 0^+$ (subsequence)

projected gradient method

Now we need to solve the optimization problem over $q \in \mathcal{A}$

$$J_{lpha}(q) = rac{1}{2} \|F(q) - g\|_{L^{2}(\Omega)}^{2} + rac{lpha}{2} \|q\|_{L^{2}(\Omega)}^{2}$$

gradient descent method: given q^0 , solve for k = 1, 2, ...

$$q^{k+1} = P_{\mathcal{A}}(q^k - \tau J'(q^k))$$

- o au > 0: a step size (Amijo's rule etc)
- $J'_{\alpha}(q^k) \in L^2(\Omega)$ the gradient at q^k : $J'_{\alpha}(q^k) = -u(q^k)p + \alpha q^k$

$$\int_{\Omega} \nabla v \cdot \nabla p + \int_{\Omega} q^k v p dx = \int_{\Omega} v(F(q^k) - g) dx \quad \forall v \in H_0^1(\Omega)$$

8/45

The pros and cons

- relatively well developed theory (existence, convergence) currently the most popular approach for inverse problems
- the choice of the penalty and regularization parameter is crucial
- requires repeated solution of optimization problem via optimizers
- **...**

Regularization by truncating iterative solvers

for the linear system

$$Ax = y$$

with $\mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$

- there are a lot of iterative methods for solving linear systems: conjugate gradient, Krylov subspace (GMRES, MINRES, ...), ...
- **a** an iterative solver attempts to solve the problem by finding successive approximations, starting from some x^0 , and then

$$x^{n+1} = f_n(x^n, x^{n-1}, ...)$$

■ Typically the update involves multiplications by A and its adjoint A^{\top} , but not explicit computation of the inverse.

why iterative methods

- sometimes the only feasible choice if the problem involves a large number of variables, making the direct methods (e.g., Gauss elimination) prohibitive
- especially practical if multiplications by A / A* are cheap e.g., dedicated implementation on GPUs
- usually not designed for ill-posed equations, but often posses self-regularizing properties: if the iterations are terminated before the solution starts to fit to noise (i.e., early stopping), one often obtains reasonable solutions for inverse problems.
- iteration index plays the role of *regularization parameter*

How to construct an iterative solver for

$$Ax = y$$
?

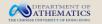
minimize the residual

$$J(x) = \frac{1}{2} ||Ax - y||^2$$

The global minimizer in \mathbb{R}^n is given by $x^{\dagger}:=A^{\dagger}y\in\mathbb{R}^n$, i.e., solving normal equation

$$A^{\top}Ax = A^{\top}y$$

and is orthogonal to ker(A). (this is not good for inverse problems.)



Instead we proceed iteratively: given x^0 , compute

$$x^{k+1} = x^k - \beta \nabla J(x^k)$$

= $x^k - \beta A^{\top} (Ax^k - y)$

Can one use it to construct approximation?

- \blacksquare $\beta > 0$, step size (learning rate)
- This method is known as the Landweber method Landweber Amer. J. Math. 1951
- Landweber + early stopping is regularizing (later)
- optimal convergence rates (later)
- very slow ...

main tool for well-posed problems: Banach fixed point iteration Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a vector-valued function.

■ A set $S \subset \mathbb{R}^n$ is called an invariant set for T if

$$T(S) \subset S$$
, i.e. $T(x) \in S \quad \forall x \in S$.

■ T is a contraction on an invariant set S if there exists $0 \le k < 1$ s.t.

$$||T(x) - T(y)|| \le \kappa ||x - y||, \quad \forall x, y \in S.$$

a vector $x \in \mathbb{R}^n$ is called a fixed point of T if

$$T(x) = x$$

Theorem (Banach fixed point theorem)

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a contraction on the closed invariant set S. Then there exists a unique fixed point $x \in S$ of T. Further, the fixed point can be found by following fixed point iteration:

$$x = \lim_{k \to \infty} x_k, \quad x_{k+1} = T(x_k),$$

for any $x_0 \in S$.

This result is valid on any metric space.

Let $x_n = T(x_{n-1})$. Then

$$||X_{n+1} - X_n|| \le \kappa ||X_n - X_{n-1}|| \le \cdots \le \kappa^n ||X_1 - X_0||$$

the sequence (x_n) is Cauchy:

$$||x_{m} - x_{n}|| \leq ||x_{m} - x_{m-1}|| + \dots + ||x_{n+1} - x_{n}||$$

$$\leq \kappa^{m-1} ||x_{1} - x_{0}|| + \dots + \kappa^{n} ||x_{1} - x_{0}||$$

$$= \kappa^{n} ||x_{1} - x_{0}|| \sum_{j=0}^{m-1-n} \kappa^{j} = \frac{\kappa^{n} (1 - \kappa^{m-n})}{1 - \kappa} ||x_{1} - x_{0}||$$

$$\leq \frac{\kappa^{n}}{1 - \kappa} ||x_{1} - x_{0}||$$

Thus it is Cauchy. There exists a limit x^* , and x^* satisfies

$$x^* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} T(x_{n-1}) = T(\lim_{n \to \infty} x_{n-1}) = T(x^*)$$

uniqueness follows by contradiction.

16/45

define a mapping T by

$$T(x) = x + \beta (A^{T}y - A^{T}Ax), \quad \beta \in \mathbb{R}$$

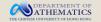
any solution to the normal equation is a fixed point of T. message: if β is small, there is a unique fixed point of T in $\ker(A)^{\perp}$, i.e. x^{\dagger} , and it can be reached by fixed point iteration if $x_0 = 0$.

Theorem

Let $0 < \beta < 2s_1^{-2}$ be fixed. Then the fixed point iteration

$$x_{k+1}=T(x_k), \quad x_0=0$$

converges towards x^{\dagger} as $k \to \infty$.



Let
$$S = \ker(A)^{\perp} = \operatorname{range}(A^{\top})$$
. Then $T(S) \subset S$ since

$$T(x) = x + A^{\top}(\beta y - \beta Ax) \in \text{range}(A^{\top})$$

for all $x \in \text{range}(A^{\top})$. Thus, S is invariant under T. Note also that by singular system $(s_j, u_j, v_j)_{j=1}^r$

$$Ax = \sum_{j=1}^{r} s_j(x, v_j)u_j, \quad A^{\top}y = \sum_{j=1}^{r} s_j(y, u_j)v_j$$

and also

$$x = \sum_{i=1}^{r} (x, v_j) v_j, \quad \forall x \in \mathcal{S}.$$

Let $x, z \in S$ and $x - z \in S$. Then

$$T(x) - T(z) = (x - z) - \beta A^{T} A(x - z)$$

$$= \sum_{j=1}^{r} (v_{j}, x - z) v_{j} - \beta \sum_{j=1}^{r} s_{j}^{2} (v_{j}, x - z) v_{j}$$

$$= \sum_{j=1}^{r} (1 - \beta s_{j}^{2}) (v_{j}, x - z) v_{j}$$

Since s_1 is the largest singular value, by assumption, we have

$$-1 < \beta s_j^2 - 1 \le \beta s_1^2 - 1 < 1, \quad j = 1, \dots, r.$$

Hence, we have

$$\kappa := \max_{j=1,\ldots,r} |\beta s_j^2 - 1| < 1.$$

19/45

Consequently,

$$||T(x) - T(z)||^2 = \sum_{j=1}^r (1 - \beta s_j^2)^2 (v_j, x - z)^2$$

$$\leq \kappa^2 \sum_{j=1}^r (v_j, x - z)^2 = \kappa^2 ||x - z||^2.$$

Thus, T is a contraction on S. Since S is also a closed invariant subset of T, there exists a unique fixed point of T in S.

To complete the proof, recall that $x^{\dagger} = A^{\dagger}y$ belongs to $S = \ker(A)^{\perp}$ and satisfies the normal equation. Further, since $x_0 = 0$ is in S, the fixed point iteration starting from x_0 converges to x^{\dagger} .

Regularizing properties of Landweber method

The kth iteration of the Landweber iteration can be written explicitly

$$x_k = \sum_{j=1}^r s_j^{-1} (1 - (1 - \beta s_j^2)^k) (y, u_j) v_j, \quad k = 0, 1, \dots$$

Since $|1 - \beta s_i^2| < 1$ by assumption,

$$(1-\beta s_j^2)^k \to 0$$
 as $k \to \infty$.

which is expected since

$$x^{\dagger} = \sum_{j=1}^{r} s_j^{-1}(y, u_j) v_j.$$

However, while $k \in \mathbb{N}$ is finite, the coefficients of $(y, u_i)v_i$ satisfy

$$s_{j}^{-1}(1 - (1 - \beta s_{j}^{2})^{k}) = s_{j}^{-1} \left(1 - \sum_{\ell=0}^{k} {k \choose \ell} (-1)^{\ell} \beta^{\ell} s_{j}^{2\ell}\right)$$
$$= \sum_{\ell=1}^{k} {k \choose \ell} (-1)^{\ell+1} \beta^{\ell} s_{j}^{2\ell-1}$$

which converges to zero as $s_j \to 0$ (for a fixed k) While, k is small enough, no coefficients of $(y, u_j)v_j$ is so large that the component of the measurement noise in the direction u_j is amplified in an uncontrolled manner.

discrepancy principle

Let y be a noisy version of some underlying exact data y^{\dagger} and

$$\|y-y^{\dagger}\|=\delta>0.$$

The Morozov discrepancy principle works for the Landweber iteration is similar to the truncated SVD and Tikhonov regularization: choose the smallest $k \ge 0$ s.t.

$$\|\mathbf{y}^{\delta}-\mathbf{A}\mathbf{x}_{\mathbf{k}}^{\delta}\|\leq\delta.$$

Such a stopping rule exists if

$$\delta > \|\mathbf{y}^{\delta} - P\mathbf{y}^{\delta}\| = \|\mathbf{y} - A\mathbf{x}^{\delta,\dagger}\|.$$

with $x^{\delta,\dagger} = A^{\dagger}y^{\delta}$. Indeed since the sequence $(x_k)_k$ converges to $x^{\delta,\dagger} = A^{\dagger}y^{\delta}$, for $\delta > \|y^{\delta} - Ax^{\delta,\dagger}\|$, there exists $k = k_{\delta}$ s.t.

$$\|\mathbf{x}_{k}^{\delta} - \mathbf{x}^{\delta,\dagger}\| \leq \|\mathbf{A}\|^{-1} (\delta - \|\mathbf{y}^{\delta} - \mathbf{A}\mathbf{x}^{\delta,\dagger}\|),$$

and thus by the reverse triangle inequality

$$||y^{\delta} - Ax_{k}^{\delta}|| - ||y^{\delta} - Ax^{\delta,\dagger}|| \le ||A(x_{k}^{\delta} - x^{\delta,\dagger})||$$

$$\le ||A|| ||x_{k}^{\delta} - x^{\delta,\dagger}||$$

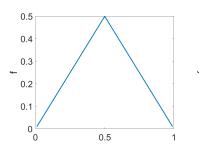
$$\le \delta - ||y^{\delta} - Ax^{\delta,\dagger}||$$

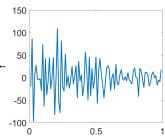
This clearly implies $||y^{\delta} - Ax_k^{\delta}|| \le \delta$.

24 / 45

Example: heat conduction

- w: the simulated heat distribution at T=0.1
- f^{\dagger} : wedge function (initial data)
- $A = e^{TB}$ forward operator, ||A|| = 1, $\beta = 1$
- a small amount of noise to the measurement, discrepancy principle

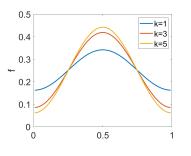


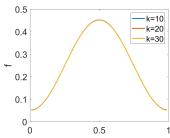


exact solution v.s. least-squares solution

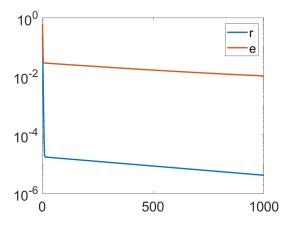
26 / 45

solution for exact data

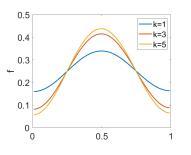


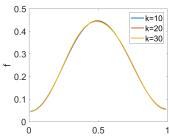


convergence for exact data

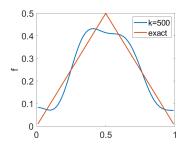


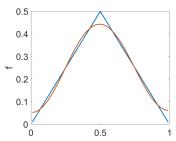
results for noisy data (1% noise)





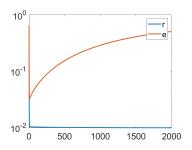
results for noisy data





discrepancy principle stops at k=6

results for noisy data



convergence issue revisited

When the problem is ill-posed, $I - \beta A^*A$ is not a contraction!

problem setting:

$$Ax = y^{\delta}$$
,

with $||y^{\delta} - y^{\dagger}|| \le \delta$, construct an approximation $x_{k(\delta)}^{\delta}$ by Landweber method, i.e.,

$$x_k^{\delta} = x_{k-1}^{\delta} - A^*(Ax_{k-1}^{\delta} - y^{\delta}), \quad k = 1, \ldots,$$

(with $x_0^{\delta} = 0$, $||A|| \le 1$, by rescaling) s.t.

$$\lim_{\delta \to 0^+} x_{k(\delta)}^{\delta} = x^{\dagger}?$$

If
$$y^{\dagger} \in D(A^{\dagger})$$
, then $x_k \to A^{\dagger}y^{\dagger}$ as $k \to \infty$. If $y \notin D(A^{\dagger})$, then $||x_k|| \to \infty$ as $k \to \infty$.

The iterate x_k is given by

$$x_{k+1} = \sum_{j=0}^{k} (I - A^*A)^j A^* y^{\dagger}$$

with $y^{\dagger} \in D(A^{\dagger})$, then $A^*y^{\dagger} = A^*Ax^{\dagger}$ for $x^{\dagger} = A^{\dagger}y^{\dagger}$, and

$$x^{\dagger} - x_{k+1} = x^{\dagger} - A^*A \sum_{j=0}^{k} (I - A^*A)^j x^{\dagger}$$

since
$$A^*A\sum_{j=0}^k (I-A^*A)^j x^{\dagger} = I - (I-A^*A)^{k+1}$$
, i.e.,

$$x^{\dagger} - X_{k+1} = (I - A^*A)^{k+1} X^{\dagger}$$

by the singular system (s_j, u_j, v_j) of A

$$||x_{k+1} - x^{\dagger}||^2 = \sum_{i} (1 - s_i^2)^{2(k+1)} (x^{\dagger}, v_j)^2$$

uniformly bounded + Lebesgue dominated convergence theorem

34/45

convergence rate under the source condition:

$$x^{\dagger} = A^* w$$

 \Rightarrow

$$x^{\dagger} - X_{k+1} = (I - A^*A)^{k+1} X^{\dagger} = (I - A^*A)^{k+1} A^* W$$

by means of spectral decomposition:

$$||x_{k+1} - x^{\dagger}||^2 = \sum_{j} s_j^2 (1 - s_j^2)^{2(k+1)} (w, u_j)^2$$

Note that $\sup_{\lambda \in [0,1]} \lambda (1-\lambda)^k \leq (k+1)^{-1}$. The error decay

$$||x_{k+1} - x^{\dagger}||^2 \le (2k+3)^{-1} \sum_{j} (w, u_j)^2 = (2k+3)^{-1} ||w||^2$$

i.e.,

$$||x_{k+1}-x^{\dagger}|| \leq (2k+2)^{-1/2}||w||$$

35/45

Let y^{\dagger}, y^{δ} be a pair of data with $||y^{\delta} - y^{\dagger}|| \leq \delta$. Then

$$||x_k - x_k^{\dagger}|| \le \sqrt{k}\delta, \quad k \ge 0.$$

$$x_k - x_k^{\delta} = \sum_{j=0}^{k-1} (I - A^*A)^j A^* (y^{\dagger} - y^{\delta}) := R_k (y^{\dagger} - y^{\delta})$$

and

$$\|R_k\|^2 = \|R_k R_k^*\| = \|\sum_{i=0}^{k-1} (I - A^* A)^i (I - (I - A^* A)^k)\| \le \|\sum_{i=0}^{k-1} (I - A^* A)^i\| \le k.$$

error analysis:

$$\mathbf{X}^{\dagger} - \mathbf{X}_{\mathbf{k}}^{\delta} = \mathbf{X}^{\dagger} - \mathbf{X}_{\mathbf{k}} + \mathbf{X}_{\mathbf{k}} - \mathbf{X}_{\mathbf{k}}^{\delta}$$

- **approximation error:** $x^{\dagger} x_k$ converges to zero as $k \to \infty$
- data error $x_k x_k^{\delta}$, of order $k^{\frac{1}{2}}\delta$
- optimal convergence (under $x^{\dagger} = A^*w + a$ priori choice of $k(\delta)$)

$$\|x_k^{\delta} - x^{\dagger}\| \leq c\delta^{\frac{1}{2}}, \quad \text{with } k(\delta) = \delta^{-1}.$$

semiconvergence: the regularizing property of iterative methods (for ill-posed) problems ultimately depend on reliable stopping

discrepancy principle: choose $k(\delta)$ s.t.

$$\|\mathbf{y}^{\delta} - \mathbf{A}\mathbf{x}_{k}^{\delta}\| \leq \tau \delta,$$

with $\tau > 1$ fixed

motivation

- If $||y^{\delta} Ax_k^{\delta}|| > 2\delta$, then x_{k+1}^{δ} approximates x^{\dagger} better than x_k^{δ} .
- The sequence $\|y^{\delta} Ax_k^{\delta}\|$ is monotonically decreasing.

$$||x_{k+1}^{\delta} - x^{\dagger}||^{2} = ||x_{k}^{\delta} - A^{*}(Ax_{k}^{\delta} - y^{\delta}) - x^{\dagger}||^{2}$$

$$= ||x^{\dagger} - x_{k}^{\delta}||^{2} - 2(x^{\dagger} - x_{k}^{\delta}, A^{*}(y^{\delta} - Ax_{k}^{\delta})) + (y^{\delta} - Ax_{k}^{\delta}, AA^{*}(y^{\delta} - Ax_{k}^{\delta}))$$

$$= ||x^{\dagger} - x_{k}^{\delta}||^{2} - 2(y^{\dagger} - y^{\delta}, y^{\delta} - Ax_{k}^{\delta}) - ||y^{\delta} - Ax_{k}^{\delta}||^{2}$$

$$+ (y^{\delta} - Ax_{k}^{\delta}, (AA^{*} - I)(y^{\delta} - Ax_{k}^{\delta}))$$

since $A^*A - I$ is negative semidefinite,

$$||x^{\dagger} - x_k^{\delta}||^2 - ||x^{\dagger} - x_{k-1}^{\delta}||^2 \le ||y^{\delta} - Ax_k^{\delta}|| (||y^{\delta} - Ax_k^{\delta}|| - 2\delta) > 0$$

for
$$\|y^{\delta} - Ax_k^{\delta}\| > 2\delta$$

monotonicity of residual

$$||Ax_{k+1}^{\delta} - y^{\delta}||^{2} - ||Ax_{k}^{\delta} - y^{\delta}||^{2}$$

$$= ||Ax_{k}^{\delta} - y^{\delta} - AA^{*}(Ax_{k}^{\delta} - y^{\delta})||^{2} - ||Ax_{k}^{\delta} - y^{\delta}||^{2}$$

$$= -2(Ax_{k}^{\delta} - y^{\delta}, AA^{*}(Ax_{k}^{\delta} - y^{\delta})) + ||AA^{*}(Ax_{k}^{\delta} - y^{\delta})||^{2}$$

$$= (||A||^{2} - 2)||A^{*}(Ax_{k}^{\delta} - y^{\delta})||^{2} < 0$$

since $||A|| \le 1$ by assumption

The Landweber method with the discrepancy principle is order optimal: for $x^{\dagger} = A^* w$,

$$||x_k^{\delta}-x^{\dagger}|| \leq c\delta^{\frac{1}{2}},$$

and the required number of iterations is $k(\delta) = O(\delta^{-1})$.

- The Landweber method can be very slow ...
- How to accelerate the computation ...
 - simple: Anderson acceleration
 - simple: Kaczmarz / stochastic gradient descent
 - complex: conjugate gradient, MINRES
 - ...

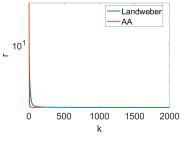
Anderson acceleration for fixed point equation: $x_{n+1} = T(x_n)$

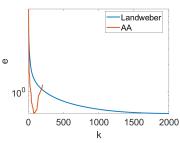
- let g(x) = T(x) x, $g_k = g(x_k)$
- set x_0 and $m \ge 1$ (memory parameter)

D. G. Anderson. Iterative Procedures for Nonlinear Integral Equations. J. the ACM. 1965; 12 (4): 547-560

$$egin{aligned} x_1 &= T(x_0) \ & ext{for } k = 1, 2, \dots ext{do} \ & m_k &= \min(m, k) \ & G_k &= [g_{k-m_k} \ \dots \ g_k] \ & lpha_k &= \arg\min_{\sum_{i=0}^{m_k} lpha_i = 1} \|G_k lpha\| \ & x_{k+1} &= \sum_{i=0}^{m_k} (lpha_k)_i f(x_{k-m_k+i}) \ & ext{end for} \end{aligned}$$

Landweber iteration v.s. Anderson acceleration for gravity





Anderson acceleration

- Landweber: slow convergence vs. slow divergence
- Anderson: fast convergence v.s. fast divergence
- no analysis of the regularizing property of AA! (open)

