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Outline

Intended topics: theory and practice of general inverse problems

introduction to inverse problems (one lecture)

regularization theory in Hilbert space

spectral cutoff (one lecture)
Tikhonov regularization (one lecture)
iterative regularization (two lectures)

regularization theory in Banach space

sparse recovery (one lecture)
general theory (one lecture)

uncertainty quantification (two lectures)

deep learning approaches (two lectures)
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well-posed problems

Jacques Salomon Hadamard (1865-1963) 1923:

a solution exists;

the solution is unique;

the solution depends continuously on the data, in some
reasonable topology.

Caution: The choice of topology is crucial for well-posedness.
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Ill-posed problems

The set of ill-posed problems is the complement of the set of
well-posed problems (in the space of all problems)

interpolation

medical scans: computed tomography, magnetic resonance
imaging, positron emission tomography, proton therapy ...

finding the physical laws

nearly all problems encountered in in daily life

When solving an ill-posed problem, it is essential to use all possible
prior and expert knowledge about the candidate solutions.
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Inverse problems in imaging
image denoising: y = x + n

noise type might be complex
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Inverse problems in imaging

image deblurring: y = k ∗ x + n

blind deconvolution: k is unknown.
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computed tomography

X-ray CT: line projection

mechanism: when X-rays pass through the patient, they are
attenuated differently by various tissues according to their density.
figure taken from Simon Arridge’s lecture, wikipedia
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Let z be an axis parallel to the direction of the beam. The intensity of
the X -ray is reduced as it travels through the tissue, following

dU(z)

dz
= −µ(z)U(z)

µ: attenuation coefficient

analytic solution:
U = U0e−

∫ `
0 µ(z)dz

Beer-Lambert law for attenuation
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Radon transform

zero scattering photons propagate
along rays `

U = U0e−
∫
`

f (x)d`

Radon transform Rf (s, α) := − ln U
U0∫ ∞

−∞
f (z sinα+s cosα,−z cosα+s sinα)dz
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computed tomography: measures X -ray attenuation by tissues inside
the body, with multiple measurements at different angles

applications: diagnosis of tumors, internal injuries, bone fractures, ...

phantom sinogram reconstruction

F. Natterer. The Mathematics of Computerized Tomography. SIAM 2001

The Nobel Prize in Physiology or Medicine 1979 was awarded to Allan M. Cormack

and Godfrey N. Hounsfield ”for the development of computer assisted tomography.”
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positron emission tomography: line projection, Poisson noise

y ∼ Poisson(Ax)

taken from Simon Arridge’s lecture
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electrical impedance tomography: recover conductivity distribution
from boundary meas.

applications: lung / breast imaging, ...

mathematical model A.P. Calderon 1980s{
∇ · (σ∇u) = 0, in Ω,

σ∂νu = f , on ∂Ω.

goal: recover the conductivity σ from all current-voltage pairs
©wikipedia

13 / 31

http://www.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk


geophysics, seismic imaging

taken from https://offshorenorge.no/ 14 / 31
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one-dimensional heat conduction

mathematical model (with Ω = (0,1), R+ = (0,∞)):

ut = uxx , in Ω× R+,

ux (0, ·) = ux (1, t) = 0, on R+,

u(·,0) = f , in Ω.

u(·, t): heat distribution at time t > 0, f initial condition, and boundary
condition: no heat flowing out of the domain.

Forward problem: determine the terminal data u(·,T ) ∈ L2(Ω),
for T > 0, given the data f ∈ L2(Ω)

Inverse problem: determine the initial data f ∈ L2(Ω), given the
(noisy) terminal data u(·,T ) =: w ∈ L2(Ω)
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direct problem

separation of variables technique via Sturm-Liouville problem{
−ϕ′′ = λϕ, in Ω,

ϕ′(0) = ϕ′(1) = 0.

eigenvalues and eigenfunctions

λn = (nπ)2

ϕn = ci cos(nπx), c0 = 1, c1 =
√

2.

(ϕn)∞n=0: complete orthonormal basis of L2(Ω)
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let u(x , t) =
∑∞

n=0 un(t)ϕn(x), and then taking inner product with ϕn

u′n(t) = −λnun(t), t > 0, with un(0) = (f , ϕn)

⇒ un = (f , ϕn)e−λnt with λn = n2π2

solution to direct problem

u(x , t) =
∞∑

n=0

fne−λntϕn,

with (fn)∞n=0 ⊂ R: Fourier cosine coefficients of the initial data f .

f =
∞∑

n=0

fnϕn with fn = (f , ϕn)L2(Ω)
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well-posedness of direct problem

The forward map: F : f 7→ u(·,T ), L2(Ω)→ L2(Ω) satisfies

F is linear, bounded, compact

F is injective, i.e., ker(F ) = {0}

range(F ) is dense in L2(Ω)
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backward heat

Solving the inverse problem for heat equation with w ∈ L2(Ω) is to
invert the compact operator F : L2(Ω)→ L2(Ω), obviously impossible!
(Fact: compact operators in infinite-dim. spaces are not invertible)

The unbounded operator:

F−1 : range(F )→ L2(Ω)

is well defined, i.e. for exact data, the problem has a unique solution.

main message:

if w ∈ range(F ): Hadamard condition (iii) is not satisfied

if w 6∈ range(F ): none of Hadamard conditions holds
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heat conduction at t = 0.01,0.1,0.2,1
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heat conduction at t = 0.01,0.1,0.2,1
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Question: Should one ignore the ill-posed inverse problems

Answer: No! The available measurement always contain some
information about f !

22 / 31

http://www.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk


1 Ill-posed problems: examples

2 Classical regularization methods
Mathematical setting
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Hilbert space
A vector space H is a real inner product space if there exists a
mapping (·, ·) : H × H → R satisfying

1 (x , y) = (y , x) for all x , y ∈ H

2 (ax1 + bx2, y) = a(x1, y) + b(x2, y) for all x1, x2, y ∈ H, a,b ∈ R

3 (x , x) ≥ 0 and (x , x) = 0 iff x = 0

H is real Hilbert space if, in addition,

H is complete with respect to the induced norm

there exists a countable orthonormal basis (ϕn)n of H w.r.t. the
inner product

(ϕj , ϕk ) = δjk and x =
∑

n

(x , ϕn)ϕn, ∀x ∈ H
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Fredholm equation

model problem: find x ∈ X s.t.

Ax = y ,

A : X → Y a linear compact operator:
bounded set in X → relatively compact set in Y
limits of operators of finite rank

y ∈ Y : given data, often contains noise

Examples

backward heat problem: F = F , X = Y = L2(Ω)

Euclidean case: X = Rn, Y = Rm and A ∈ Rm×n
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Let A∗ : Y → X be the adjoint operator of A : X → Y s.t.

(Ax , y) = (x ,A∗y) ∀x ∈ X , y ∈ Y

orthogonal decompositions

X = ker(A)⊕ (ker(A))⊥ = ker(A)⊕ range(A∗)

Y = range(A)⊕ (range(A))⊥ = range(A)⊕ ker(A∗)

where ”bar” denotes the closure of a set and

ker(A) = {x ∈ X : Ax = 0}
range(A) = {y ∈ Y : y = Ax ,∃x ∈ X}

(Ker(A))⊥ = {x ∈ X : (x , z) = 0, ∀z ∈ ker(A)}
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singular system
characterization of compact operators: There exists a set of (possibly
countably infinite ) vectors (vn)n ⊂ X and (un)n ∈ Y and a sequence
of positive numbers (sn)n, ordered nonincreasingly and
limn→∞ sn = 0 (if the rank is not finite) such that

Ax =
∑

n

sn(x , vn)un, ∀x ∈ X

or
Avn = snun, n = 1, . . .

and
range(A) = span(un), (ker(A))⊥ = span(vn)

The system (sn,un, vn)n is called a singular system of A, and the
expansion is called the singular value decomposition (SVD) of A.
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Solvability

By the orthonormality of (un),

P : Y → range(A), y →
∑

n

(y ,un)un

is an orthogonal projection

P2 = P and range(P) ⊥ range(I − P)
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Picard’s criterion 1909

The equation Ax = y has a solution iff

y = Py and
∑

n

s−2
n |(y ,un)|2 <∞

Under this condition, all solutions of Ax = y are of the form

x = x0 +
∑

n

s−1
n (y ,un)vn

for some x0 ∈ ker(A)

This criterion underpins many methods: MUSIC, ...
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interpretation of the conditions

The first condition y = Py states that y cannot have components
in the orthogonal complement of range(A), if Ax = y

The second condition, i.e., the convergence of the series∑
n

s−2
n |(y ,un)|2

is redundant if rank(A) <∞, in which ase range(A) = range(A).
Meanwhile, if rank(A) =∞, it is equivalent to the finiteness of the
norm of

x = x0 +
∑

n

s−1
n (y ,un)vn

i.e., the potential solutions belong to X
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One natural way to circumvent problems with the first condition
is to consider the projected equation

Ax = PAx = Py

instead of Ax = y . However, this does not help with the second
condition since there is no gurantee that∑

n

s−2
n (Py ,un)2 <∞

for a general y ∈ Y , if rank(A) =∞
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