MATH1050 More on vector spaces and linear transformations.

- 0. (a) The handout is a continuation of the Handouts Linear algebra beyond systems of linear equations and manipulation of matrices, Spanning sets, linearly independent sets, and bases.
 - (b) The justification for the theoretical results and the claims in the concrete examples are left as exercises in the use of sets, functions and equivalence relations in *set language*.

1. Theorem (1).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

The statements below hold:

- (a) Suppose U is a subspace of V over \mathbb{F} . Then $\varphi(U)$ is a subspace of W over \mathbb{F} .
- (b) Let U_1, U_2 be subspaces of V over \mathbb{F} . Suppose U_1 is a subspace of U_2 over \mathbb{F} . Then $\varphi(U_1)$ is a subspace of $\varphi(U_2)$ over \mathbb{F} .
- (c) Suppose U_1, U_2 are subspaces of V over \mathbb{F} . Then $\varphi(U_1 + U_2) = \varphi(U_1) + \varphi(U_2)$ as vector spaces over \mathbb{F} .
- (d) Suppose U_1, U_2 are subspaces of V over \mathbb{F} . Then $\varphi(U_1 \cap U_2)$ is a subspace of $\varphi(U_1) \cap \varphi(U_2)$ over \mathbb{F} .

2. **Theorem (2).**

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi : V \longrightarrow W$ be a linear transformation over \mathbb{F} .

The statements below hold:

- (a) Suppose U is a subspace of W over \mathbb{F} . Then $\varphi^{-1}(U)$ is a subspace of V over \mathbb{F} .
- (b) Let U_1, U_2 be subspaces of W over \mathbb{F} . Suppose U_1 is a subspace of U_2 over \mathbb{F} . Then $\varphi^{-1}(U_1)$ is a subspace of $\varphi^{-1}(U_2)$ over \mathbb{F} .
- (c) Suppose U_1, U_2 are subspaces of W over \mathbb{F} . Then $\varphi^{-1}(U_1+U_2)=\varphi^{-1}(U_1)+\varphi^{-1}(U_2)$ as vector spaces over \mathbb{F} .
- (d) Suppose U_1, U_2 are subspaces of W over IF. Then $\varphi^{-1}(U_1 \cap U_2) = \varphi^{-1}(U_1) \cap \varphi^{-1}(U_2)$ as vector spaces over IF.

3. Definition.

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi : V \longrightarrow W$ be a linear transformation over \mathbb{F} .

The subspace $\varphi^{-1}(\{0\})$ of V is called the **kernel of the linear transformation** φ . It is denoted by $\mathcal{N}(\varphi)$.

Remark on terminology. The kernel of T is also called the null space of φ .

4. Examples on null spaces.

Refer to the Handout Linear algebra beyond systems of linear equations and manipulation of matrices. Given that V,W are vector spaces over a field \mathbb{F} , and $\varphi:V\longrightarrow W$ is a linear transformation over \mathbb{F} , the null space of φ is the solution set of the homogeneous linear equation

$$\varphi(\mathbf{u}) = \mathbf{0}$$

with unknown \mathbf{u} in V.

(a) Let \mathbb{F} be a field. Suppose that A is an $(m \times n)$ -matrix with entries in \mathbb{F} .

Recall the null space $\mathcal{N}(A)$ of the matrix A is given by $\mathcal{N}(A) = \{\mathbf{x} \in \mathbb{F}^n : A\mathbf{x} = \mathbf{0}\}.$

Recall that the linear transformation defined by matrix multiplication from the left by A is the linear transformation $L_A : \mathbb{F}^n \longrightarrow \mathbb{F}^m$ given by $L_A(\mathbf{x}) = A\mathbf{x}$ for any $\mathbf{x} \in \mathbb{F}^n$.

The kernel $\mathcal{N}(L_A)$ of L_A is equal to the null space $\mathcal{N}(A)$ of the matrix A.

(b) i. Let $c \in \mathbb{R}$. Define the function $E_c : \mathbb{R}[x] \longrightarrow \mathbb{R}$ by $E_c(f) = f(c)$ for any $f(x) \in \mathbb{R}[x]$. E_c is a linear transformation from $\mathbb{R}[x]$ to \mathbb{R} . The kernel of E_c is $\{f(x) \in \mathbb{R}[x] : f(c) = 0\}$. According to Factor Theorem, this is

The kernel of E_c is $\{f(x) \in \mathbb{R}[x] : f(c) = 0\}$. According to Factor Theorem, this is $\{f(x) \in \mathbb{R}[x] : f(x) \text{ is divisible by } x - c\}$.

ii. Define the function $T: \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ by (T(f))(x) = xf(x) for any $f(x) \in \mathbb{R}[x]$. T is a linear transformation from $\mathbb{R}[x]$ to $\mathbb{R}[x]$. The kernel of T is $\{0\}$. (Here 0 stands for the zero polynomial.) iii. Define the function $S: \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ by (S(f))(x) = f(x) - f(0) for any $f(x) \in \mathbb{R}[x]$. S is a linear transformation from $\mathbb{R}[x]$ to $\mathbb{R}[x]$.

The kernel of S is $\{f(x) \in \mathbb{R}[x] : f(x) \text{ is a constant polynomial}\}.$

- (c) Let J be an open interval in \mathbb{R} .
 - i. Let $c \in J$. Define the function $D_c : C^1(J) \longrightarrow \mathbb{R}$ by $D_c(\varphi) = \varphi'(c)$ for any $\varphi \in C^1(J)$.

 D_c is a linear transformation from $C^1(J)$ to \mathbb{R} .

The kernel of D_c is the set of all real-valued functions on J which are continuously differentiable on J and whose first derivatives vanish at the point c.

ii. Define the function $D: C^1(J) \longrightarrow C(J)$ by $(D(\varphi))(x) = \varphi'(x)$ for any $\varphi \in C^1(J)$ for any $x \in J$. D is a linear transformation from $C^1(J)$ to C(J).

The kernel of D is the set of all constant real-valued functions on J. (To verify this claim, you need to apply the Mean-Value Theorem.)

- (d) Let J be an interval in \mathbb{R} .
 - i. Let $c \in J$.

Define the function
$$I_c: C(J) \longrightarrow C^1(J)$$
 by $I_c(\varphi)(x) = \int_c^x \varphi$ for any $\varphi \in C(J)$ for any $x \in J$.

 I_c is a linear transformation from C(J) to $C^1(J)$.

The kernel of I_c is the singleton whose only element is the zero function on J. (To verify this claim, you need to apply the Fundamental Theorem of the Calculus.)

ii. Let $c \in J$. Let $f \in C(J)$.

Define the function
$$T: C(J) \longrightarrow C^1(J)$$
 by $T(\varphi)(x) = \int_0^x \varphi \cdot f$ for any $\varphi \in C(J)$ for any $x \in J$.

T is a linear transformation from C(J) to $C^1(J)$.

The kernel of T is the set of all real-valued functions defined on J which are continuous on J and which vanish on the set $\{t \in J : f(t) \neq 0\}$.

5. **Theorem (3).**

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi : V \longrightarrow W$ be a linear transformation over \mathbb{F} .

The statements below are logically equivalent:

- (a) φ is injective.
- (b) For any $\mathbf{x} \in V$, if $\varphi(\mathbf{x}) = \mathbf{0}$ then $\mathbf{x} = \mathbf{0}$.
- (c) $\mathcal{N}(\varphi) = \{ \mathbf{0} \}.$

Remark. Theorem (3) generalizes the result about matrices and vectors below:

Suppose A is an $(m \times n)$ -matrix with entries in a field \mathbb{F} .

Then L_A is injective iff $\mathcal{N}(A) = \{\mathbf{0}\}.$

6. Theorem (4).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

(a) Let $\mathbf{x}, \mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in V$.

Suppose **x** is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ over \mathbb{F} .

Then $\varphi(\mathbf{x})$ is a linear combination of $\varphi(\mathbf{u}_1), \varphi(\mathbf{u}_2), \cdots, \varphi(\mathbf{u}_k)$ over \mathbb{F} .

(b) Suppose S is a subset of V.

Then $\varphi(\operatorname{Span}_{\mathbb{F}}(S)) = \operatorname{Span}_{\mathbb{F}}(\varphi(S)).$

(c) Let S be a subset of V.

Suppose S is a spanning set for V over \mathbb{F} .

Then $\varphi(S)$ is a spanning set for $\varphi(V)$.

Remark. Theorem (4) generalizes the result about matrices and vectors below: Suppose A is an $(m \times n)$ -matrix with entries in a field \mathbb{F} .

(Recall that $L_A: \mathbb{F}^n \longrightarrow \mathbb{F}^m$ is the function defined by $L_A(\mathbf{x}) = A\mathbf{x}$ for any $\mathbf{x} \in \mathbb{F}^n$.)

The statements below hold:

- (a) Let $\mathbf{x}, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in \mathbb{F}^n$. Suppose \mathbf{x} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$. Then $A\mathbf{x}$ is a linear combination of $A\mathbf{u}_1, A\mathbf{u}_2, \dots, A\mathbf{u}_k$.
- (b) Suppose $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in \mathbb{F}^n$, and $U = [\mathbf{u}_1 \mid \mathbf{u}_2 \mid \dots \mid \mathbf{u}_k]$. Then $L_A(\mathcal{C}(U)) = \mathcal{C}(AU)$.
- (c) Let V be a subspace of \mathbb{F}^n , and $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in \mathbb{F}^n$. Suppose $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ is a spanning set for V over \mathbb{F} . Then $\{A\mathbf{u}_1, A\mathbf{u}_2, \cdots, A\mathbf{u}_k\}$ is a spanning set for $L_A(V)$.
- (d) $L_A(\mathbb{F}^n) = \mathcal{C}(A)$.

7. Theorem (5).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

- (a) Let S be a subset of V. Suppose S is linearly dependent over \mathbb{F} . Then $\varphi(S)$ is linear dependent over \mathbb{F} .
- (b) Let T be a subset of V. Suppose T is linearly independent over \mathbb{F} . Further suppose φ is injective. Then $\varphi(T)$ is linear independent over \mathbb{F} .

Remark. Theorem (5) generalizes the result about matrices and vectors below:

Suppose A is an $(m \times n)$ -matrix with entries in a field \mathbb{F} .

- (a) Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ be pairwise distinct vectors in \mathbb{F}^n . Suppose $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ are linearly dependent. Then $A\mathbf{u}_1, A\mathbf{u}_2, \dots, A\mathbf{u}_k$ are linearly dependent vectors in \mathbb{F}^n .
- (b) Let $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$ be pairwise distinct vectors in \mathbb{F}^n . Suppose $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$ are linearly independent. Further suppose $\mathcal{N}(A) = \{\mathbf{0}\}$. Then $A\mathbf{w}_1, A\mathbf{w}_2, \dots, A\mathbf{w}_k$ are linearly independent vectors in \mathbb{F}^m .

8. Theorem (6).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

Let B be a base for V over \mathbb{F} . Further suppose φ is injective.

Then $\varphi(B)$ is a base for $\varphi(V)$ over \mathbb{F} .

Corollary to Theorem (6).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi : V \longrightarrow W$ be a linear transformation of \mathbb{F} . Suppose φ is injective. Then, for any subspace U of V, for any subset C of V, C is a base for U over \mathbb{F} iff $\varphi(C)$ is a base for $\varphi(U)$ over \mathbb{F} . In particular, for any subset B of V, B is a base for V over \mathbb{F} iff $\varphi(B)$ is a base for $\varphi(V)$ over \mathbb{F} .

9. Theorem (7).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

Let B be a base for $\mathcal{N}(\varphi)$ over \mathbb{F} , and C be a base for V over \mathbb{F} . Suppose $B \subset C$.

Then $\varphi(C \backslash B)$ is a base for $\varphi(V)$ over \mathbb{F} .

10. Theorem (8).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi : V \longrightarrow W$ be a linear transformation over \mathbb{F} . Suppose V is finite-dimensional over \mathbb{F} . The statements below hold:

- (a) $\mathcal{N}(\varphi)$ is a finite-dimensional vector space over \mathbb{F} , and $\dim_{\mathbb{F}}(\mathcal{N}(\varphi)) \leq \dim_{\mathbb{F}}(V)$. Equality holds iff $\varphi(\mathbf{x}) = \mathbf{0}$ for any $\mathbf{x} \in V$.
- (b) Write $k = \dim_{\mathbb{F}}(V) \dim_{\mathbb{F}}(\mathcal{N}(\varphi))$. Suppose B is a base for $\mathcal{N}(\varphi)$ over \mathbb{F} . Then there exist some $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in V \setminus \mathcal{N}(\varphi)$ such that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are pairwise distinct, $\varphi(\mathbf{u}_1), \varphi(\mathbf{u}_2), \cdots, \varphi(\mathbf{u}_k)$ are pairwise distinct, $B \cup \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ is a base for V over \mathbb{F} , and $\{\varphi(\mathbf{u}_1), \varphi(\mathbf{u}_2), \cdots, \varphi(\mathbf{u}_k)\}$ is a base for $\varphi(V)$ over \mathbb{F} .

(c) $\dim_{\mathbb{F}}(V) = \dim_{\mathbb{F}}(\mathcal{N}(\varphi)) + \dim_{\mathbb{F}}(\varphi(V)).$

Remark on terminology. The dimension of (the finite-dimensional vector space) $\varphi(V)$ over \mathbb{F} is called the rank of the linear transformation φ .

Remark. The equality described in Statement (c) is known as the **dimension formula** (for a linear transformation whose domain is finite-dimensional). It generalizes the result about matrices and vectors below:

Suppose A is an $(m \times n)$ -matrix with entries in a field \mathbb{F} . Then $n = \dim_{\mathbb{F}}(\mathcal{N}(A)) + \dim_{\mathbb{F}}(\mathcal{C}(A))$.

11. Definition.

Let V, W be vector spaces over a field \mathbb{F} .

- (a) Let $\varphi: V \longrightarrow W$ be a linear transformation of \mathbb{F} . φ is called a **linear isomorphism** if φ is bijective.
- (b) V is said to be **isomorphic** to W as vector spaces over \mathbb{F} if there is some linear isomorphism from V to W over \mathbb{F} .

Theorem (9).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi : V \longrightarrow W$ be linear transformation over \mathbb{F} .

Suppose φ is a linear isomorphism over \mathbb{F} . Then the inverse function $\varphi^{-1}:W\longrightarrow V$ of the bijective function φ a linear isomorphism over \mathbb{F} .

12. Theorem (10).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be linear transformation over \mathbb{F} .

The statements below are logically equivalent:

- (a) φ is a linear isomorphism over \mathbb{F} .
- (b) For any subset B of V, if B is a base for V over \mathbb{F} then $\varphi(B)$ is a base for W over \mathbb{F} .
- (c) For any subset C over W, if C is a base for W over \mathbb{F} then $\varphi^{-1}(C)$ is a base for V over \mathbb{F} .

13. Theorem (11).

Let V, W be vector spaces over a field \mathbb{F} .

Let B be a base for V over \mathbb{F} .

For any function $f: B \longrightarrow W$, there exists some unique linear transformation $\varphi: V \longrightarrow W$ such that $\varphi|_B = f$ as functions.

Remark on terminology. The function φ is called the linear transformation determined by **linear extension** from f.

14. Theorem (12).

Let V, W be vector spaces over a field \mathbb{F} .

The statements below are logically equivalent:

- (a) V is isomorphic to W over \mathbb{F} .
- (b) For any subset B of V, if B is a base for V over \mathbb{F} , then there exists some injective function $f: B \longrightarrow W$ such that f(B) is a base for W over \mathbb{F} .
- (c) There exist some subset C of V, some subset D of W, and some bijective function $g: C \longrightarrow D$ such that C is a base for V over \mathbb{F} and D is a base for W over \mathbb{F} .

Remark. We tacitly assume that every vector space over a field has a base over that field.

15. Theorem (13).

Let V be a vector space over a field \mathbb{F} . Suppose V is finite-dimensional over \mathbb{F} . Write $n = \dim_{\mathbb{F}}(V)$.

Then the statements below hold:

(a) Let W be a vector space over \mathbb{F} . Suppose V is isomorphic to W as vector spaces over \mathbb{F} . Then W is finite-dimensional, and $\dim_{\mathbb{F}}(W) = n$.

- (b) V is isomorphic to \mathbb{F}^n as vector spaces over \mathbb{F} .
- (c) Let W be a finite-dimensional vector space over \mathbb{F} . Suppose $\dim_{\mathbb{F}}(W) = n$. Then V is isomorphic to W as vector spaces over \mathbb{F} .

16. Examples on linear isomorphisms and isomorphic vector spaces.

(a) Let \mathbb{F} be a field. Suppose that A is an $(n \times n)$ -square matrix with entries in \mathbb{F} .

 L_A is a linear isomorphism from \mathbb{F}^n to \mathbb{F}_n iff A is non-singular.

Its inverse function L_A^{-1} is the linear transformation $L_{A^{-1}}$.

(b) Let **F** be a field.

Recall that $\mathsf{Mat}_{m \times n}(\mathbb{F})$ is a vector space over \mathbb{F} , of dimension mn.

A base for $\mathsf{Mat}_{m \times n}(\mathbb{F})$ over \mathbb{F} is given by $\{E_{i,j}^{m,n} \mid i \in [1,m] \text{ and } j \in [1,n] \}$, in which each $E_{i,j}^{m,n}$ is the $(m \times n)$ -matrix with entries in \mathbb{F} whose (i,j)-th entry is 1 and whose other entries are all 0.

 $\mathsf{Mat}_{m\times n}(\mathsf{IF})$ is isomorphic to IF^{mn} over IF as vector space over IF .

Recall that a base for \mathbb{F}^{mn} over \mathbb{F} is given by $\{\mathbf{e}_k^{(mn)} \mid k \in [\![1,mn]\!]\}.$

A bijective function f from $\{E_{i,j}^{m,n} \mid i \in [\![1,m]\!] \text{ and } j \in [\![1,n]\!] \}$ to $\{\mathbf{e}_k^{(mn)} \mid k \in [\![1,mn]\!] \}$ is given by $f(E_{i,j}^{m,n}) = \mathbf{e}_{(i-1)n+j}^{(mn)}$ for any $i \in [\![1,m]\!]$, $j \in [\![1,n]\!]$.

A linear isomorphism from $\mathsf{Mat}_{m \times n}(\mathbb{F})$ to \mathbb{F}^{mn} over \mathbb{F} is obtained by extending f by linearity.

When m=2 and n=3, the bijective function f is explicitly given by

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix},$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

(c) Recall that Map(N, R) is the set of all infinite sequences with real entries. It is a vector space over IR.

An infinite sequence $\{a_n\}_{n=0}^{\infty}$ in the reals is said to be terminating if there exists some $N \in \mathbb{N}$ such that for any $n \in \mathbb{N}$, if n > N then $a_n = 0$.

We denote by $\mathsf{Map}_{00}(\mathsf{N},\mathsf{IR})$ the set of all terminating infinite sequences in IR .

 $Map_{00}(N, R)$ is a subspace of Map(N, R) over R.

A base for $\mathsf{Map}_{00}(\mathsf{N},\mathsf{IR})$ is given by $D=\{\delta_j\mid j\in\mathsf{N}\}$. (Here for each $j\in\mathsf{N},\ \delta_j:\mathsf{N}\longrightarrow\mathsf{IR}$ is given by

$$\delta_j(x) = \begin{cases} 1 & \text{if } x = j \\ 0 & \text{if } x \neq j \end{cases} .)$$

Recall that $\mathbb{R}[x]$ is the vector space of all polynomials with real coefficients.

A base for $\mathbb{R}[x]$ over \mathbb{R} is given by $E = \{e_j(x) \mid j \in \mathbb{N}\}$. (Here, for any $j \in \mathbb{N}$, $e_j(x)$ is the polynomial x^j .)

A bijective function $f: D \longrightarrow E$ is given by $f(\delta_i) = e_i(x)$ for any $j \in \mathbb{N}$.

 $\mathsf{Map}_{00}(\mathsf{N},\mathsf{R})$ is isomorphic to $\mathsf{IR}[x]$ as vector spaces over IR .

An linear isomorphism from $\mathsf{Map}_{00}(\mathsf{N},\mathsf{R})$ to $\mathsf{R}[x]$ over R is obtained by extending f by linearity.

5

(d) Let J be an open interval in \mathbb{R} .

Recall that C(J) is the vector space of all real-valued functions of one real variable with domain J which are continuous on J.

Also recall that $C^1(J)$ is the vector space of all real-valued functions of one real variable with domain J which are continuously differentiable on J.

Differentiation defines the linear transformation D from $C^1(J)$ to C(J), given explicitly by $(D(\varphi))(x) = \varphi'(x)$ for any $\varphi \in C^1(J)$ for any $x \in J$.

Let $a \in J$.

Recall that the function $I_a: C(J) \longrightarrow C^1(J)$ defined by $I_a(\varphi)(x) = \int_a^x \psi$ for any $\psi \in C(J)$ for any $x \in J$ is a linear transformation from C(J) to $C^1(J)$.

Define $C^1(J;a) = \{ \varphi \in C^1(J) : \varphi(a) = 0 \}.$

 $C^1(J;a)$ is a vector subspace of $C^1(J)$ over \mathbb{R} .

It happens that $I_a(C(J)) = C^1(J; a)$. (Why?)

The restriction of D to $C^1(J;a)$ defines a linear transformation from $C^1(J;a)$ to C(J). Denote this linear transformation by Δ_a . Hence by definition, $\Delta_a(\varphi) = D(\varphi)$ for any $\varphi \in C^1(J;a)$.

Also, for any $\varphi \in C^1(J; a)$, $I_a(D(\varphi)) = \varphi$.

Moreover, for any $\psi \in C(J)$, $D(I_a(\psi)) = \psi$.

It follows that Δ_a is a linear isomorphism from $C^1(J;a)$ to C(J), with its inverse function Δ_a given explicitly by $\Delta_a^{-1}(\psi) = I_a(\psi)$ for any $\psi \in C(J)$.

17. Theorem (14).

Let V be a vector space over a field \mathbb{F} , and U be a subspace of V over \mathbb{F} .

Define $E(V, U) = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} - \mathbf{y} \in U\}$, and R(V, U) = (V, V, E(V, U)).

Then R(V, U) is an equivalence relation in V.

Remarks on terminologies.

- (a) The equivalence relation R(V, U) is called the **equivalence relation in** V **induced by the subspace** U **over** \mathbb{F} .
- (b) The quotient in V by R(V,U) is denoted by V/U, and is called the **quotient space of the vector space** V by the subspace U over \mathbb{F} . (We are going to define a 'natural' vector space structure on the set V/U.)
- (c) For any $\mathbf{x} \in V$, the equivalence class of \mathbf{x} under R(V, U) is denoted by $\mathbf{x} + U$. By definition, $\mathbf{x} + U = {\mathbf{y} \in V : \mathbf{y} = \mathbf{x} + \mathbf{z} \text{ for some } \mathbf{z} \in U}$. (This set equality needs to be verified.)
- (d) The **quotient mapping from** V **to** V/U refers to the quotient mapping from V to V/U induced by R(V,U), given by $\mathbf{x} \longmapsto \mathbf{x} + U$ for any $\mathbf{x} \in V$. It is denoted by $q_{V,U}$.

18. **Theorem (15).**

Let V be a vector space over a field \mathbb{F} , and U be a subspace of V over \mathbb{F} .

$$\text{(a) Define } G_{\scriptscriptstyle\Sigma} = \left\{ ((J,K),L) \left| \begin{array}{l} J,K,L \in V/U \text{ and} \\ \text{there exists some } \mathbf{x},\mathbf{y} \in V \text{ such that} \\ J = \mathbf{x} + U, \ K = \mathbf{y} + U, \text{ and } L = (\mathbf{x} + \mathbf{y}) + U \end{array} \right. \right\}, \ and \ \Sigma = ((V/U)^2,V/U,G_{\scriptscriptstyle\Sigma}).$$

Then Σ is a function from $(V/U)^2$ to V/U, with graph G_{Σ} .

Moreover, for any $\mathbf{x}, \mathbf{y} \in V$, $\Sigma(\mathbf{x} + U, \mathbf{y} + U) = (\mathbf{x} + \mathbf{y}) + U$.

$$\text{(b) } \textit{Define } G_{\Pi} = \left\{ ((\alpha, J), K) \left| \begin{array}{l} \alpha \in \mathbb{F} \text{ and } J, K \in V/U \text{ and} \\ \text{there exists some } \mathbf{x} \in V \text{ such that} \\ J = \mathbf{x} + U \text{ and } K = (\alpha \mathbf{x}) + U \end{array} \right. \right\}, \ \textit{and} \ \Pi = (\mathbb{F} \times (V/U), V/U, G_{\Pi}).$$

Then Π is a function from $\mathbb{F} \times (V/U)$ to V/U, with graph G_{Π} .

Moreover, for any $\alpha \in \mathbb{F}$, for any $\mathbf{x} \in V$, $\Pi(\alpha, \mathbf{x} + U) = (\alpha \mathbf{x}) + U$.

- (c) V/U is a vector space over \mathbb{F} with vector addition Σ and scalar multiplication Π .
- (d) The quotient mapping $q_{V,U}: V \longrightarrow V/U$ is a surjective linear transformation, and $\mathcal{N}(q_{V,U}) = U$.

Remarks on terminologies and notations.

(a) We call Σ the (vector) addition in (the quotient space) V/U. (Note that Σ is a closed binary operation on V/U.)

From now on we agree to write $\Sigma(J, K)$ as J + K for any $J, K \in V/U$.

Hence for any $\mathbf{x}, \mathbf{y} \in V$, we have $(\mathbf{x} + U) + (\mathbf{y} + U) = (\mathbf{x} + \mathbf{y}) + U$.

(b) We call Π the scalar multiplication in (the quotient space) V/U over (the field) \mathbb{F} .

From now on we agree to write $\Pi(\alpha, J)$ as αJ for any $\alpha \in \mathbb{F}$, for any $J \in V/U$.

Hence for any $\alpha \in \mathbb{F}$, for any $\mathbf{x} \in V$, we have $\alpha(\mathbf{x} + U) = (\alpha \mathbf{x}) + U$.

19. **Theorem (16).**

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi : V \longrightarrow W$ be a linear transformation. The statements below hold:

- (a) For any $\mathbf{x} \in V$, $\mathbf{x} + \mathcal{N}(\varphi) = \varphi^{-1}(\{\varphi(\mathbf{x})\})$.
- (b) For any $\alpha, \beta \in \mathbb{F}$, for any $\mathbf{y}, \mathbf{z} \in \varphi(V)$, $\varphi^{-1}(\alpha \mathbf{y} + \beta \mathbf{z}) = \alpha \varphi^{-1}(\{\mathbf{y}\}) + \beta \varphi^{-1}(\{\mathbf{z}\})$.
- (c) $V/\mathcal{N}(\varphi)$ is isomorphic to $\varphi(V)$ as vector spaces over \mathbb{F} and a linear isomorphism Υ_{φ} from $\varphi(V)$ to $V/\mathcal{N}(\varphi)$ is given by $\Upsilon_{\varphi} : \mathbf{y} \longmapsto \varphi^{-1}(\{\mathbf{y}\})$ for any $\mathbf{y} \in \mathcal{N}(\varphi)$.

The equality $q_{V,\mathcal{N}(\varphi)} = \Upsilon_{\varphi} \circ \varphi$ holds.

20. Example on quotient vector spaces: Vector space of solution sets for systems of linear equations with the same coefficient matrix.

Let \mathbb{F} be a field. Suppose that A is an $(m \times n)$ -matrix with entries in a field \mathbb{F} .

Recall that the linear transformation $L_A: \mathbb{F}^n \longrightarrow \mathbb{F}^m$ is given by $L_A(\mathbf{x}) = A\mathbf{x}$ for any $\mathbf{x} \in \mathbb{F}^n$.

Recall that the kernel of L_A is the null space $\mathcal{N}(A)$ of the matrix A, and is the solution space of the homogeneous equation $A\mathbf{u} = \mathbf{0}$ with unknown $\mathbf{u} \in \mathbb{F}^n$.

Also recall that $L_A(\mathbb{F}^n) = \mathcal{C}(A)$.

(a) Suppose $\mathbf{p} \in \mathbb{F}^n$ and $\mathbf{b} \in \mathcal{C}(A)$, and suppose ' $\mathbf{u} = \mathbf{p}$ ' is a solution of the linear equation $A\mathbf{u} = \mathbf{b}$ with unknown \mathbf{u} in \mathbb{F}^n .

Then
$$L_A^{-1}(\{\mathbf{b}\}) = L_A^{-1}(\{L_A(\mathbf{p})\}) = \mathbf{p} + \mathcal{N}(A) = \mathbf{x} + \mathcal{N}(A) = \{\mathbf{y} \in \mathbb{F}^n : \mathbf{y} = \mathbf{p} + \mathbf{h} \text{ for some } \mathbf{h} \in \mathcal{N}(A)\}.$$

Recall that $L_A^{-1}(\{\mathbf{b}\})$ is the solution set of the linear equation $A\mathbf{u} = \mathbf{b}$ with unknown \mathbf{u} in \mathbb{F}^n .

So the set equality $L_A^{-1}(\{\mathbf{b}\}) = \mathbf{p} + \mathcal{N}(A)$ is what we mean by the sentence below:

The general solution of the linear equation $A\mathbf{u} = \mathbf{b}$ is given by (any) one particular solution, say ' $\mathbf{u} = \mathbf{p}$ ', of the equation $A\mathbf{u} = \mathbf{b}$ 'added to' the solution space of the homogeneous equation $A\mathbf{u} = \mathbf{0}$.

(b) The vector space $\mathbb{F}^n/\mathcal{N}(A)$ is isomorphic to $\mathcal{C}(A)$ as vector spaces over \mathbb{F} ,

A linear isomorphism Υ_{L_A} from $\mathcal{C}(A)$ to $\mathbb{F}^n/\mathcal{N}(A)$ is given by $\Upsilon_{L_A}: \mathbf{b} \longmapsto L_A^{-1}(\{\mathbf{b}\})$ for any $\mathbf{b} \in \mathcal{C}(A)$. This tells us that the set of the non-empty solution sets of the linear equations with the same coefficient matrix A but with various vectors of constant are provided, via Υ_{L_A} , with a natural linear structure, namely, that of $\mathbb{F}^n/\mathcal{N}(A)$.

(c) Suppose $\mathbf{b}, \mathbf{c} \in \mathcal{C}(A)$. Then the equality $L_A^{-1}(\{\mathbf{b} + \mathbf{c}\}) = L_A^{-1}(\{\mathbf{b}\}) + L_A^{-1}(\{\mathbf{c}\})$ holds.

This equality is what we mean by the sentence below:

The general solution of the linear equation $A\mathbf{u} = \mathbf{b} + \mathbf{b}$ is the same as 'adding up' the general solution of the equation $A\mathbf{u} = \mathbf{b}$ and the general solution of the equation $A\mathbf{u} = \mathbf{c}$.

(d) Suppose $\mathbf{b} \in \mathcal{C}(A)$, and $\beta \in \mathbb{F}$. Then the equality $L_A^{-1}(\{\beta \mathbf{b}\}) = \beta L_A^{-1}(\{\mathbf{b}\})$ holds.

This equality is what we mean by the sentence below:

The general solution of the linear equation $A\mathbf{u} = \beta \mathbf{b}$ is the same as 'multiplying' the general solution of the equation $A\mathbf{u} = \mathbf{b}$ by the scalar β .

21. Example on quotient spaces: Vector space of indefinite integrals.

Let J be an open interval in \mathbb{R} . Recall that C(J) is the set of all real-valued functions with domain J which is continuous on J. Recall that $C^1(J)$ is the set of all real-valued functions with domain J which is continuously differentiable on J.

Define the function $D: C^1(J) \longrightarrow C(J)$ by D(h) = h' for any $h \in C^1(J)$.

Note that D is a surjective and non-injective linear transformation. (Why?)

Note that the kernel $\mathcal{N}(D)$ of the linear transformation D is the vector space of all constant real-valued functions on J, which is a subspace of $C^1(J)$. (This is a consequence of the Mean-Value Theorem.)

The vector space $C^1(J)/\mathcal{N}(D)$ is isomorphic to C(J) as vector spaces over \mathbb{R} .

(a) Suppose $h \in C^1(J)$ and $u \in C(J)$, and suppose h' = u.

Then
$$D^{-1}(\{u\}) = D^{-1}(\{D(h)\}) = h + \mathcal{N}(D) = \{g \in C^1(J) : g = h + C \text{ for some } C \in \mathcal{N}(D)\}.$$

Recall that $D^{-1}(\{u\})$ is the set of all primitives of the continuous function u on the interval J. It is the indefinite integral $\int u(x)dx$.

So the set equality $D^{-1}(\{u\}) = h + \mathcal{N}(D)$ is what we mean by the 'formula'

$$\int u(x)dx = h(x) + C, \text{ where } C \text{ is an arbitrary constant}$$

(b) Suppose $u, v \in C(J)$ and $\alpha, \beta \in \mathbb{R}$. Then the equality $D^{-1}(\{\alpha u + \beta v\}) = \alpha D^{-1}(\{u\}) + \beta D^{-1}(\{v\})$ holds. It is what we mean by the 'formula'

$$\int (\alpha u(x) + \beta v(x))dx = \alpha \int u(x)dx + \beta \int v(x)dx.$$