
MATH1050 Ideas behind the construction of the real number system with rational numbers

1. In the mid-nineteenth century there were several attempts in making sense of the notions of real numbers and the
real number system in terms of rational numbers (which mathematicians then felt more comfortable). It was part of
the historical development in which mathematicians tried to ‘make the calculus (of one variable) rigorous’.

It was in this process that mathematicians asked this question:

• ‘What is the real number system?’

We have provided an answer in the handout Formalization of the Real Number System as understood in School Maths.

Here we inspect the ideas which motivated the various approaches in the construction of the real number system with
rational numbers. We take for granted the validity of Statement (♯):

(♯) Let α, β ∈ R. Suppose α < β. Then there exists some r ∈ Q such that α < r < β.

Statement (♯) is Corollary (D2) in the handout Archimedean Principle for the reals, which can be deduced with the
help of the Least-upper-bound Axiom and the Well-ordering Principle for Integers.

2. Cantor’s construction of the real number system.

Georg Cantor visualized a real number as the entirety of those infinite sequences of rational numbers which approxi-
mate the real number concerned.

A motivation for his idea is provided in Theorem (IR1).

Theorem (IR1).

Let α be an irrational number.

Let {rn}∞n=0 be a strictly decreasing infinite sequence of rational numbers which converges to 0. The statements below
hold:

(a) For any n ∈ N, there exists some cn ∈ Q such that α− rn < cn < α+ rn.

(b) {cn}∞n=0 is an infinite sequence of rational numbers which converges to α.

(c) For any positive rational number q, there exist some N ∈ N such that for any m,n ∈ N, if m > N and n > N

then |cm − cn| < q.

Statement (a) is an immediate consequence of Statement (♯).

Statements (b), (c) are consequences of Statement (a) together with the definition for the notion of limit of sequence.
(For the definition the notion of limit of sequence, refer to Bounded-Monotone Theorem for infinite sequences.)

Remark. What the above says, in plain words, is that it is possible to approximate the irrational number α as
accurately as we like with infinite sequences of rational numbers which converges to α, such as {cn}∞n=0.

The idea that irrational numbers can be approximated as accurately as possible by infinite sequences of rational
numbers was exploited by Cantor in his approach in constructing the real number system with rational numbers.

Definition. (Fundamental sequences.)

(a) Let {cn}∞n=0 be an infinite sequence of rational numbers. The sequence {cn}∞n=0 is said to be a fundamental
sequence if the statement (FS) holds:

(FS) For any positive rational number q, there exist some N ∈ N such that for any m,n ∈ N, if m > N and
n > N then |cm − cn| < q.

(b) Suppose {cn}∞n=0, {c′n}∞n=0 are fundamental sequences. Then we say {cn}∞n=0 is equivalent to {c′n}∞n=0 if the
statement (EQ) holds:

(EQ) For any positive rational number q, there exists some N ∈ N such that for any n ∈ N, if n > N then
|cn − c′n| < q.

Illustrations.
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(a) The infinite sequence of rational numbers
{

n∑
k=0

1

k!

}∞

n=0

is a fundamental sequence.

The infinite sequence of rational numbers
{(

1 +
1

n

)n}∞

n=1

is a fundamental sequence.

These two fundamental sequences are equivalent to each other.
These two fundamental sequences, along with all other fundamental sequences which are equivalent to them, are
identified as the irrational number e, according to Cantor.

(b) Let k ∈ N\{0, 1} and p be a positive prime number.
Define the infinite sequence {cn}∞n=0 recursively by

c0 = p

cn+1 =
1

k

[
(k − 1)cn +

p

cnk−1

]
for any n ∈ N

Note that {cn}∞n=0 is an infinite sequence of rational numbers. We can verify that {cn}∞n=0 is a fundamental
sequence.
{cn}∞n=0, along with all fundamental sequences which are equivalent to it, is identified as the irrational number
n
√
p, according to Cantor.

Further remark. The result below is along a similar line of thought to Theorem (IR1):

• Theorem (IR1’).
Let α be a irrational number.
Let {rn}∞n=0 be a strictly decreasing infinite sequence of positive rational numbers which converges to 0. The
statements below hold:

(a) For any n ∈ N, there exists some an, bn ∈ Q such that α−rn < an < α−rn+1 < α < α+rn+1 < bn < α+rn.
(b) {an}∞n=0 is a strictly increasing infinite sequence of rational numbers which converges to α.
(c) {bn}∞n=0 is a strictly decreasing infinite sequence of rational numbers which converges to α.

The infinite sequence of intervals {[an, bn]}∞n=0 is something known as a nested sequence of interval, in the
sense that [an+1, bn+1] ⊂ [an, bn] for any n ∈ N.

It happens that its generalized intersection
∞
∩

n=0
[an, bn] is simply the singleton {α}.

In this sense, we may say that it is possible to approximate the irrational number α as accurately as we like with
an infinite sequence of closed and bounded intervals with rational endpoints which ‘will eventually shrink to α’,
for example {[an, bn]}∞n=0.
This point of view is useful in numerical mathematics.

3. Dedekind’s construction of the real number system.

Richard Dedekind visualized irrational real numbers as ‘ideal points’ filling the gaps between rational numbers. As
for rational numbers, they are just themselves.

A motivation for this idea is provided in Theorem (IR2).

Theorem (IR2).

Let α be an irrational number.

Let Aα = (−∞, α) ∩ Q, Bα = (α,+∞) ∩ Q.

The statements below hold:

(a) (⋆) For any s ∈ Aα, for any t ∈ Bα, s < α < t.
(†) Aα ∩Bα = ∅.
(‡) Aα ∪Bα = Q.

(b) i. Aα is bounded above in R by every element of Bα.
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ii. Aα has no greatest element.

(c) i. Bα is bounded below in R by every element of Aα.
ii. Bα has no least element.

(d) i. The supremum of Aα in R is α.
ii. The infimum of Bα in R is α.

The proofs for Statements (⋆), (†), (‡) are straightforward exercises in set language and inequalities.

Statements (b.i), (c.i) are immediate consequences of Statement (⋆).

We prove Statements (b.ii), (d.i) below. (The proofs for Statements (c.ii), (d.ii) are similar.)

Proof of Statement (b.ii).

Suppose it were true that Aα had a greatest element, say, s.

By the definition of Aα, s < α. Then, by Statement (♯), there would exist some s′ ∈ Q such that s < s′ < α.

By the definition of Aα, we would have s′ ∈ Aα. (Now s′ > s, and s was by assumption a greatest element of Aα.)
Contradiction arises.

Hence Aα has no greatest element in the first place.

Proof of Statement (d.i).

By the definition of Aα, α is an upper bound of Aα in R.

We verify that for any β ∈ R, if β is an upper bound of Aα in R, then α ≤ β:

Pick any β ∈ R. Suppose β is an upper bound of Aα in R.
Suppose it were true that β < α.
By Statement (♯), there would exist some s ∈ Q such that β < s < α.
Then, by the definition of Aα, we would have s ∈ Aα. (Now s > β, and β was assumed to be an upper bound
of Aα.) Contradiction arises.
It follows that α ≤ β in the first place.

Hence α is the supremum of Aα in R.

Remark. What the above says, in plain words, is that the irrational number α ‘splits’ Q into two ‘disjoint’ sets of
rationals, namely Aα, Bα, every rational in Aα being strictly less than every rational in Bα.

The pair of sets Aα, Bα is called the Dedekind cut induced by the irrational number α.

The idea that an arbitrary irrational number corresponds to a Dedekind cut induced by that irrational number was
exploited by Dedekind in his approach in constructing the real number system with rational numbers.

Definition. (Dedekind cut.)

Let S, T be non-empty subsets of Q. The pair of sets S, T is called a Dedekind cut if S ∩ T = ∅ and S ∪ T = Q and
for any x ∈ S, for any y ∈ T , x < y.

Illustrations.

(a) Define S =

{
x ∈ Q : x ≤

n∑
k=0

1

k!
for some n ∈ N

}
, T = Q\S.

The Dedekind cut S, T is identified as the irrational number e, according to Dedekind.

(b) Let p be a positive prime number.
Define S = {x ∈ Q : x ≤ 0 or xn < p}, T = {x ∈ Q : x > 0 and xn > p}.
Observe that the sets S, T are defined in terms of rational numbers alone.
The Dedekind cut S, T is identified as the irrational number n

√
p, according to Dedekind.

4. Decimal representation of real numbers.

Since childhood, we have been used to visualizing real numbers as certain types of infinite series: the (infinite series of)
‘decimal representations’. When the process of representations by decimals is clarified, we obtain another construction
of the real number system with rational numbers.

3



We start with a result which is analogous of Division Algorithm for Natural Numbers (Theorem (DAN) in the Handout
Division Algorithm):

Theorem (DAR).

Let x, u ∈ R. Suppose x ≥ 0 and u > 0. Then there exist some unique q ∈ N, r ∈ R such that x = q × u + r and
0 ≤ r < u.

The existence part of Theorem (DAR) relies on the Archimedean Principle and the Well-ordering Principle for Integers.
For its proof, imitate how we start the argument for Theorem (D1) in the handout Archimedean Principle for the
reals.

The argument for the uniqueness part of Theorem (DAR) is almost the same as that for Theorem (DAN) in the
handout Division Algorithm.

Corollary (DAR1).

Let x ∈ R. Suppose x ≥ 0. Then there exist some unique q ∈ N, r ∈ R such that x = q + r and 0 ≤ r < 1.

Remark on terminology. In the context of Corollary (DAR1), We denote the natural number q by ⌊x⌋, and call it
is called the integral part of the non-negative real number x. The number r is referred to as the non-integral
part of the non-negative real number x.

Definition. (Decimal representation of real numbers between 0 and 1.)

Let d ∈ R. Suppose 0 ≤ d < 1.

Let {dn}∞n=0 be an infinite sequence in J0, 9K.
Suppose the infinite sequence

{
p∑

k=0

dk
10k+1

}∞

p=0

converges to d.

Then we say
{

p∑
k=0

dk
10k+1

}∞

p=0

is a decimal representation of d. As a convention, we write d = 0.d0d1d2d3d4 · · · .

Remarks.

(I) What we actually mean by ‘d = 0.d0d1d2d3d4 · · · ’ is ‘d = lim
p→∞

p∑
k=0

dk
10k+1

’. So, for instance, when we write

‘1
3
= 0. 333333 · · ·︸ ︷︷ ︸

all 3’s

’, what we are actually saying is that 1

3
is the limit of the infinite sequence

{
p∑

k=0

3

10k+1

}∞

p=0

.

(II) Some real numbers may admit distinct decimal representations.

For example, 1

2
= 0.5 000000 · · ·︸ ︷︷ ︸

all 0’s

and 1

2
= 0.4 999999 · · ·︸ ︷︷ ︸

all 9’s

. But this is natural in light of the definition of decimal

representation in terms of convergence of infinite sequences.

That every real number between 0 and 1 admits a decimal representation is guaranteed by Theorem (DR).

Theorem (DR).

Let a ∈ R. Suppose 0 ≤ a < 1.

(a) For any n ∈ N, define ãn = ⌊10n+1a⌋.
{ãn}∞n=0 is an infinite sequence in N.

Moreover,
{

ãn
10n+1

}∞

n=0

is an increasing infinite sequence of real numbers and converges to a.

(b) Further define a0 = ã0. For any m ∈ N\{0}, further recursively define am = 10ãm−1 − ãm.
{am}∞m=0 is an infinite sequence in J0, 9K.
The infinite sequence

{
p∑

k=0

ak
10k+1

}∞

p=0

is the same as
{

ãn
10n+1

}∞

n=0

. It is a decimal representation of a.
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The justification for the convergence of
{

ãn
10n+1

}∞

n=0

to a relies on the formal definition for the notion of limit of

sequence. The rest of the argument for Theorem (DR) is straightforward.

Illustrations of the ideas in Theorem (DR).

(a) Let a =
1

3
.

ã0 =

⌊
10

3

⌋
= 3, ã1 =

⌊
100

3

⌋
= 33, ã2 =

⌊
1000

3

⌋
= 333, et cetera. For each n ∈ N, an = 3.

A decimal representation for a is


n∑

j=0

3

10j+1


∞

n=0

, as expected.

(b) Let a =
1

5
.

ã0 =

⌊
10

5

⌋
= 2, ã1 =

⌊
100

5

⌋
= 20, ã2 =

⌊
1000

2

⌋
= 200, et cetera. We have a0 = 2. For each n ∈ N\{0}, an = 0.

A decimal representation for a is

 2

10
+

n∑
j=1

0

10j+1


∞

n=0

, as expected.

In the light of Theorem (DAR) and Theorem (DR), we may express each non-negative real number x as x =

N.a0a1a2a3a4 · · · , in which N is the integral part of x, and 0.a0a1a2a3a4 · · · is a decimal representation of the
non-integral part of x. We refer to N.a0a1a2a3a4 · · · as a decimal representation of the non-negative real
number x.

When y is a negative real number, −y is a positive real number, and admits a decimal representation −y =

M.b0b1b2b3b4 · · · . We may express y as y = −M.b0b1b2b3b4 · · · . We refer to −M.b0b1b2b3b4 · · · as a decimal repre-
sentation of the negative real number y.
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