
MATH1050 Surds of positive real numbers.

0. Refer to the handout Formalization of the Real Number System as understood in School Maths. There we have
introduced the Laws of Arithmetic for the reals and the Laws of Order for the reals, which cover the properties of the
arithmetic operations +,−,×,÷ and the symbols ≤, < in the ‘world of real numbers’.
But how about the ‘operation’ of ‘extracting the n-th root for an arbitrary positive real number’ (which we seem to
have learnt a lot about since school days)?
It turns out that this ‘operation’ is much more complicated than we realized in the past. It cannot be described by
+,−,×,÷ and ≤, < alone. ‘Taking limit’ is involved.

1. Definition. (Real n-th root of a positive real number.)
Let n be an integer greater than 1, and r, ρ be positive real numbers. We say ρ is the real n-th root of x if ρn = r.

We write ρ = n
√
r.

Remark. For this definition to make sense, Theorem (1) and Theorem (2) need to be proved. These two results are
logically independent of each other.

2. Theorem (1). (Existence of a real n-th root of a positive real number.)
Let n be an integer greater than 1. Suppose r is a positive real number. Then there exists some positive real number
ρ such that ρn = r.
Remark. This result is non-trivial. The argument relies on what you have learnt in the calculus of one real variable.

Theorem (2). (Uniqueness of a real n-th root of a positive real number.)
Let n be an integer greater than 1. Suppose r is a positive real number. Then there is at most one positive real number
ρ which satisfies ρn = r.
Remark. A more formal formulation of Theorem (2) reads:

Let n be an integer greater than 1. Suppose r is a positive real number. Suppose ρ, σ are positive real numbers,
and ρn = r and σn = r. Then ρ = σ.

3. Proof of Theorem (2).
Let n be an integer greater than 1. Suppose r is a positive real number. Suppose ρ, σ are positive real numbers, and
ρn = r and σn = r.
Then ρn = r = σn. Therefore

0 = ρn − σn

= (ρ− σ)(ρn−1 + ρn−2σ + ρn−3σ2 + · · ·+ ρn−kσk + · · ·+ ρ2σn−3 + ρσn−2 + σn−1)

Since ρ, σ are positive real numbers, each of ρn−1, ρn−2σ, ρn−3σ2, ..., ρ2σn−3, ρσn−2, σn−1 is a positive real number.

Then (ρn−1 + ρn−2σ + ρn−3σ2 + · · ·+ ρn−kσk + · · ·+ ρ2σn−3 + ρσn−2 + σn−1) is a positive real number.
Therefore ρ− σ = 0. Hence ρ = σ.

4. Recall the Intermediate-Value Theorem from your calculus of one real variable course.
Intermediate-Value Theorem. (Bolzano’s version.)

Let a, b ∈ R, with a < b. Let f : [a, b] −→ R be a function. Suppose f(a)f(b) < 0. Suppose f is continuous on [a, b].
Then there exists some x0 ∈ (a, b) such that f(x0) = 0.

With the help of the Intermediate-Value Theorem, we can give a proof of Theorem (1).

5. Proof of Theorem (1), with the help of the Intermediate-Value Theorem.
Let n be an integer greater than 1. Suppose r is a positive real number.
Let f : [0, r + 1] −→ R be the function defined by f(x) = xn − r for any x ∈ [0, r + 1].

Note that f is continuous on [0, r + 1] (because f is a polynomial function).

Also note that f(0) = −r < 0.

We verify that f(r + 1) > 0:
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Note that f(r + 1) = (r + 1)n − r = (r + 1)n − (r + 1) + 1 = (r + 1)[(r + 1)n−1 − 1] + 1.
Since r > 0, we have r + 1 > 1. Then (r + 1)n−1 > 1.
Therefore f(r + 1) > 0.

Now we have f(0) < 0 and f(r + 1) > 0. Then f(0)f(r + 1) < 0.

By the Intermediate-Value Theorem, there exists some ρ ∈ (0, r + 1) such that f(ρ) = 0.

By definition, ρ is a positive real number. Moreover, ρn − r = f(ρ) = 0. Then ρn = r.

6. The Intermediate-Value Theorem is non-trivial. It relies on the Bounded-Monotone Theorem, which can be regarded
as a ‘fundamental assumption’ about the real number system.
Bounded-Monotone Theorem for infinite sequences of real numbers.
Let {an}∞n=0 be an infinite sequence of real numbers.

Suppose {an}∞n=0 is
{

increasing
decreasing

}
.

Further suppose {an}∞n=0 is
{

bounded above
bounded below

}
in R.

Then {an}∞n=0 converges in R .

We are going to give an outline of an alternative argument for Theorem (1), which relies on the Bounded-Monotone
Theorem at the crucial step.

7. Outline of an alternative proof of Theorem (1), with a direct application of the Bounded-Monotone
Theorem.
Let n be an integer greater than 1. Suppose r is a positive real number.
Define the infinite sequence of positive real numbers {ak}∞k=0 by a0 = r

ak+1 =
1

n

[
(n− 1)ak +

r

akn−1

]
if k ∈ N

.

We verify the statements below:

(a) {ak}∞k=0 is strictly decreasing.

(b) {ak}∞k=0 is bounded below in R.

By the Bounded-Monotone Theorem, {ak}∞k=0 converges to some real number, which we denote by ρ.

We have limk→∞ ak = ρ and limk→∞ ak+1 = ρ.

By definition, we have nak
n−1ak+1 = (n− 1)ak

n + r for any k ∈ N. Then

nρn = · · · = lim
k→∞

nak
n−1ak+1 = lim

k→∞
[(n− 1)ak

n + r] = · · · = (n− 1)ρn + r.

Therefore ρn = r.
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