MATH1050 Answers to Examples: Cardinality.

- 1. ——
- 2. (a) Yes.
 - (b) Yes.
- 3. (a) Yes.
 - (b) Yes.
- 4. (a) An injective function from A_1 to B_1 is $f: A_1 \longrightarrow B_1$ defined by $f(x) = \frac{x}{2} + \frac{17}{6}$ for any $x \in A_1$. An injective function from B_1 to A_1 is $g: B_1 \longrightarrow A_1$ defined by g(x) = x - 2 for any $x \in B_1$.
 - (b) An injective function from A_2 to B_2 is $f: A_2 \longrightarrow B_2$ by $f(x) = \frac{1}{x+2}$ for any $x \in A_2$. An injective function from B_2 to A_2 is $g: B_2 \longrightarrow A_2$ by g(x) = x+1 for any $x \in B_2$.
 - (c) An injective function from A_3 to B_3 is $f: A_3 \longrightarrow B_3$ defined by

$$f(x) = \begin{cases} e^x + 0.1 & \text{if} & x \in (-\infty, -1) \\ 1.1 + 0.5^x & \text{if} & x \in \mathbb{N} \end{cases}$$

An injective function from B_3 to A_3 is $g: B_3 \longrightarrow A_3$ defined by g(x) = x - 3 for any $x \in B_3$.

- (d) An injective function from A_4 to B_4 is $f: A_4 \longrightarrow B_4$ defined by f(x) = 0.0001x + 0.1 for any $x \in A_4$. An injective function from B_4 to A_4 is $g: B_4 \longrightarrow A_4$ defined by $g(x) = 2^{-x} + 1$ for any $x \in B_4$.
- (e) An injective function from A_5 to B_5 is $f: A_5 \longrightarrow B_5$ by $f(x) = x + \sqrt{2}$ for any $x \in A_5$. An injective function from B_5 to A_5 is $g: B_5 \longrightarrow A_5$ by $g(y) = \frac{1}{y} + 1$ for any $y \in B_5$.
- (f) An injective function from D to S is the inclusion function $\iota: D \longrightarrow S$ given by $\iota(p) = p$ for any $p \in D$. An injective function from S to D is $g: S \longrightarrow D$ given by g(z) = 0.5z for any $z \in S$.
- 5. (a)
 - (b)
 - *Hint.* One possible appropriate is to 'construct' the 'chain' $\$^2 \lesssim ||| \$^3 \lesssim [-1, 1] \lesssim \2 .
 - (c)
 - *Hint.* One possible approach is to construct the 'chain' $\$^1 \leq \$^2 \leq [-1, 1]^3 \leq [-1, 1] \leq \1 .
- 6. —

7. —

8. (a) An injective function from $A \cup B$ to $(A \times, \{0\}) \cup (B \times \{1\})$ is given by the relation $\psi = (A \cup B, (A \times \{0\}) \cup (B \times \{1\}), H)$ defined by

$$H = \{ (x, (x, 0)) \mid x \in A \} \cup \{ (y, (y, 1)) \mid y \in B \setminus A \}.$$

- (b) A bijective function from $A \times \{0\}$ to $A \times \{b\}$ is given by the relation $\varphi_1 = (A \times \{0\}, A \times \{b\}, G_1)$ defined by by $G_1 = \{((x, 0), (x, b)) \mid x \in A\}.$
- (c) A bijective function from $B \times \{1\}$ to $(\{a\} \times (B \setminus \{b\})) \cup \{(a', b')\}$ is given by the relation $\varphi_2 = (B \times \{1\}, (\{a\} \times (B \setminus \{b\})) \cup \{(a', b')\}, G_2)$ defined by

$$G_2 = \{((y,1), (a,y)) \mid y \in B \setminus \{b\}\} \cup \{((b,1), (a',b'))\}$$

(d) The relation

 $\varphi = ((A \times \{0\}) \cup (B \times \{1\}), (A \times \{b\}) \cup (\{a\} \times (B \setminus \{b\})) \cup \{(a', b')\}, G_1 \cup G_2)$

is a bijective function.

(e) —

- 9. (a) (b)
 - (c) Yes.
- 10. (a)
 - (b) —
 - (c) Yes.
- 11. ——
- 12. (a) —

(b) *Hint.* The function given by $\Psi : \mathsf{Map}(\mathsf{N}, \{0, 1, 2\}) \longrightarrow \mathsf{Map}(\mathsf{N}, \{0, 1\})$ by

$$(\Psi(\varphi))(n) = \begin{cases} 1 & \text{if} \quad n = 3k \text{ and } \varphi(k) = 0 \\ 0 & \text{if} \quad n = 3k \text{ and } \varphi(k) = 1 \\ 0 & \text{if} \quad n = 3k \text{ and } \varphi(k) = 2 \\ 0 & \text{if} \quad n = 3k + 1 \text{ and } \varphi(k) = 0 \\ 1 & \text{if} \quad n = 3k + 1 \text{ and } \varphi(k) = 1 \\ 0 & \text{if} \quad n = 3k + 1 \text{ and } \varphi(k) = 2 \\ 0 & \text{if} \quad n = 3k + 2 \text{ and } \varphi(k) = 0 \\ 0 & \text{if} \quad n = 3k + 2 \text{ and } \varphi(k) = 1 \\ 1 & \text{if} \quad n = 3k + 2 \text{ and } \varphi(k) = 2 \end{cases}$$

is an injective function from $Map(N, \{0, 1, 2\})$ to $Map(N, \{0, 1\})$

- 13. ——
- 14. ——
- 15. ——
- 16. —

Remark. In fact, we have $C(J) \sim C^n(J)$, where $C^n(J)$ the set of all real-valued *n*-th times differentiable functions on J whose *n*-th derivatives are continuous functions on J for each $n \in \mathbb{N} \setminus \{0\}$.

- 17. (a) $\mathfrak{F}_0(\mathbb{N}) = \{\emptyset\}.$
 - (b) The function $f_1 : \mathbb{N} \longrightarrow \mathfrak{F}_1(\mathbb{N})$ given by $f_1(x) = \{x\}$ for any $x \in \mathbb{N}$ is a bijective function from \mathbb{N} to $\mathfrak{F}_1(\mathbb{N})$.
 - (c) The function $f_2 : \mathbb{N}^2 \longrightarrow \mathfrak{F}_2(\mathbb{N}) \cup \mathfrak{F}_1(\mathbb{N})$ given by $f_2(x, y) = \{x, y\}$ for any $x, y \in \mathbb{N}$ is a surjective function from \mathbb{N}^2 to $\mathfrak{F}_2(\mathbb{N}) \cup \mathfrak{F}_1(\mathbb{N})$.
 - (d) Yes.
 - (e) Yes.
 - (f) Yes.
 - (g) Yes.
 - (h) No.
- 18. (a) Yes. The cardinality of $\mathfrak{S}_n(A)$ is $|A|^n$.
 - (b) Yes.
 - (c) No.