1. Definition.
Let A be a set.

(1) A is countable if ASN.
(2) A is said to be countably infinite if A~N.

(3) A is said to be uncountable if A is not countable.

Basic examples of countably infinite sets.

(a) N, Z, Q;
(b) N%, N, N*, ... .

Basic examples of uncountable sets.

(a) Map(N, {0, 1}), Map(N, [0,9]), Map(N, N);
(b) [0,1], R, C;
(c) R?, IR3, IR%, .
(d) B(N), B(P (N))y‘ﬁ(‘ﬁ(‘ﬁ("\')»; .



Definition.

Let A be a set.

(1) A is countable if ASN.
(2) A is said to be countably infinite if A~N.

(3) A is said to be uncountable if A is not countable.

Theorem (XXI).

(1) Suppose A is a set. Then A is countable iff (A is finite or A is countably infinite).

(2) Suppose A is a set. Then A is countably infinite iff A is both countable and infinite.
(3) A is uncountable iff N < A.

Remark.

The arguments of the respective statements are word games, possibly involving the applica-
tion of Schroder-Bernstein Theorem.



Definition.
Let A be a set.

(1) A is countable if ASN.
(2) A is said to be countably infinite if A~N. |
(3) A is said to be uncountable if A is not countable.

Theorem (XXI).
(1) Let A be a set. A is countable iff (A is finite or A is countably infinite).

(2) Let A be a set. A is countably infinite iff A is both countable and infinite.

(3) A is uncountable iff N < A.

Further remarks.

(a) Heuristic idea on ‘being countable’:
A is countable exactly when we can identify A as a subset of N by labeling the elements

of A exhaustively by natural numbers.
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Definition.

Let A be a set.

(1) A is countable if ASN.
(2) A is said to be countably infinite if A~N.

(3) A is said to be uncountable if A is not countable.

Theorem (XXI).

(1) Suppose A is a set. Then A is countable iff (A is finite or A is countably infinite).

(2) Suppose A is a set. Then A is countably infinite iff A is both countable and infinite.
(3) A is uncountable iff N < A.

Further remarks.
(a) ...
(b) Heuristic idea on ‘being uncountable’

A is uncountable exactly when there are ‘so many’ elements in A that there is no way to
label all the elements of A by natural numbers alone.

(¢) We may think of N or whatever countably infinite set as a ‘smallest’ infinite set.



Definition.

Let A be a set.

(1) A is countable if ASN.

(2) A is said to be countably infinite if A~N.

(3) A is said to be uncountable if A is not countable.

Theorem (XXI).

(1) Let A be a set. A is countable iff (A is finite or A is countably infinite).
(2) Let A be a set. A is countably infinite iff A is both countable and infinite.
(3) A is uncountable iff N < A.

Further remarks.
Classification of sets by comparing ‘relative sizes’ with the ‘smallest’ infinite
set N:

A is finite. (A < N.)| A is infinite. (N<SA.) same as left.
same as above. A is countably infinite. (A~N.)|same as below.
same as right. A is countable. (A<N.) A is uncountable. (N < A.)




2. ‘Hilbert’s Hotel’.

Every ‘infinite” set can ‘absorb’ a countably infinite set (or a finite set, which is a set of
‘smaller size’ than N) to form a new set of the ‘same size’ as itself.

Theorem (XXII). (‘Hilbert’s Hotel’.)
Let A, B be sets.

Suppose A Is infinite and B is countable. Further suppose AN B = ().
Then AU B~A.

Proof.  The result follows from Theorem (XXI), Lemma (XXIII) and Lemma (XXIV).

Lemma (XXIII).
Let A, B be sets.

Suppose A is infinite and B is finite. Further suppose AN B = 0.
Then AU B~A.

Lemma (XXIV).
Let A, B be sets.

Suppose A Is infinite and B is countably infinite. Further suppose AN B = ().
Then AU B~A.



Lemma (XXIII).
Let A, B be sets.
Suppose A is infinite and B is finite. Further suppose AN B = 0.

Then AU B~A.

Proof of Lemma (XXIII).
Let A, B be sets. Suppose A is infinite and B is finite. Further suppose A N B = (.
There is an injective function from N to A.

This injective function defines some infinite sequence {x,, }°°, in A with no repeated terms:

e T, #* T, whenever m # n.

Write S = {x, | n € N}. (S is the set of all terms of {x,}°°,.)
Since B is finite, and |B| = N for some N € N.

Write B = {yanla T 7yN—1}-



Proof of Lemma (XXIII). (Cont’d.)
Idea. How to proceed with the construction of a bijective function from A to AU BY?

A S Ty T1 -+ TN_1|TN TNl Tnao - | 2 € A\S
b4 U} l e
AUB|SUB |y y1 -+ yn-1|T0 Top1 Tope -+ |2 € A\S

Define [with the table above in mind]

Fr = (i) | 1€ [0,N = 1]} U{(zj, z;—n) | j € Nand j > N},
Fy = {(2.2) | = € A\S}.

Define the relation f = (A, AU B, F) by F = Fy U F.
f is a bijective function from A to AU B. (Why?)
It follows that A~A U B.



Lemma (XXIV).
Let A, B be sets.

Suppose A Is infinite and B is countably infinite. Further suppose AN B = ().
Then AU B~A.

Proof of Lemma (XXIV).

Let A, B be sets. Suppose A is infinite and B is countably infinite. Further suppose
ANB=0.

There is an injective function from N to A.

This injective function defines some infinite sequence {x,}°, in A with no repeated terms:

e T, # T, whenever m # n.

Write S = {x, | n € N}. (S is the set of all terms of {x,}°°,.)
Since B~N, there is a bijective function from N to B.

This bijective function defines some infinite sequence {y,}>2, in B, exhausting B and with
no repeated terms:

« B={y, | neN}, and y,, # y, whenever m # n.



Proof of Lemma (XXIV). (Cont’d.)
Idea. How to proceed with the construction of a bijective function from A to AU BY?

A S Tog T1 To T3 Ty Ty -+ ToN ToaN+1 **° | R € A\S
N e
AUB|SUB|yy 9 y1 1 Y2 X2 -+ Ynv IN -z e A\S

Define [with the table above in mind]
Gr = {(x2n,Yn) | n € N} U {(Z2ns1,20) [ ENY, Go={(2,2) | 2 € A\S}
Define the relation g = (A, AU B,G) by G = G1 U Gb.

g is a bijective function from A to AU B. (Why?)
It follows that A~A U B.



3. Consequences of ‘Hilbert’s Hotel’.
The conclusion in Theorem (XXII) still holds when the condition ‘A N B = ()" is dropped.

Corollary (XXV).

Let C, D be sets. Suppose C' is infinite and D is countable. Then C' U D~C.
Proof.

... Note that C U D = C U (D\C) and C N (D\C) = 0.

C' is infinite and D\C' is countable. (Why?)

Then, by Theorem (XXII), CU D = C U (D\C)~C.

Corollary (XXVI).
Let C, D be sets. Suppose D C C'.
Also suppose that C\ D is infinite and D is countable.

Then C\D~C'

Proof.

... Note that C'= (C\D)U D and (C\D) N D = 0.
C\ D is infinite and D is countable.

Then, by Theorem (XXII), C'= (C\D) U D~C\D.



Example of application of Corollary (XXVI).
R\Q~IR. Also, @ < R\@.

Justification:

{ "V/2}°°, is an infinite sequence with no repeated terms in R\Q. (Why?)
Therefore IR\ is infinite.

By Corollary (XXVTI), R\Q~IR.

Since Q < IR, we also have Q < IR\ Q.

Remark.

There are as many irrational numbers as real numbers. There are ‘much more’ irrational
numbers than rational numbers.



. Countable union of countable sets.

Recall the definition for the notion of generalized union:

« Let M be a set and {5,}>2, be an infinite sequence of subsets of M. The (generalized)
union of {S,}52, is defined to be the set {x € M : x € S, forsomen € N}. It is

denoted by D—Oo Sh.

Theorem (XXVII). (Countability of countable union of countable sets.)

Let A be a set, and {A,,}°°, be an infinite sequence of countable subsets of A.
OLjO A,, 1s countable.
n=

Remark.

Hence ‘the (generalized) union of countably many countable sets is countable’



Theorem (XXVII). (Countability of countable union of countable sets.)
Let A be a set.

Suppose { A}, is an infinite sequence of countable subsets of A.
Then OLjO A, is countable.
n=

Idea of proof.
Write B = OLjO A,

For each n € N, label the elements of A,, exhaustively with elements of N, so that we have
An — {xn()a Lnl, Lnp2y " }

Now obtain the possibly ‘infinite array’, which exhausts the elements of the set B:

Ao | Too To1 Tz T3 -
Aylzo 211 12 T13 -
Aoyl wog o1 T2 Toz -
As| T30 w31 T3p 33 -

For each n, the ‘row’ of the ‘x,;’s may ‘terminate’” or not.
There may be ‘repeated’ entries amongst the ‘z;;’s’
No matter what, the ‘size’ of this ‘array’ is at most that of N* and hence that of N.

Hence B is countable.



Theorem (XXVII). (Countability of countable union of countable sets.)
Let A be a set.

Suppose { A, }°°, be an infinite sequence of countable subsets of A.

Then OLjO A,, is countable.
n=

Corollary (XXVIII). (Sufficiency criteria for being countably infinite.)
Let A be a set, and { A, }>°, be an infinite sequence of countable subsets of A.
(1) Suppose nOL:jo A,, is infinite. Then nEJ:o A, is countably infinite.
(2) Suppose there exists some m € N such that A,, is countably infinite.
Then n&:() A,, is countably infinite.

(3) Suppose there exists some infinite sequence {x, }>°, in A such that both of the statements
below hold:
(3a) (x, € A, for anyn € N) and
(3b) (for any k,m € N, if k # m then zj # x,,).

Then &Oo A,, is countably infinite.
n=



5. Examples of applications of Theorem (XXVII), Theorem (XXVIII).

(1) Another argument for Q~N:
e Write N* = N\{0}.
For any n € N*, define Q),, = {T| m € Z}.
n

We have Q = OL_jl Qn. (Why?)

Note that Q,~Z~N. (Why?)
Then QSN.

Recall N<@.

Then we have Q~N.



(2) Denote by Q[z] the set of all polynomials with indeterminate x and
with coefficients in Q.

Q|z]\{0}~N. Also, Q[z]~N

Justification:

e For any n € N, define
= {f(z) € Q[z] : deg(f(z)) =n}.

(T}, is the set of all degree-n polynomials with indeterminate x and with coefficients in
Q.)
We have Q[z]\{0} = fjo T,. (Why?)
Write Q* = Q\{0}. Note that T,,~Q" x Q"~N. (How? Why?)
Then Q[x]\{0}<N.
For cach § € N, denote by 2/ the monic monomial of degree j.
N~{z7 | j € N}SQ[2]\{0}.
Then we have Q[x]\{0}~N.
Then Q[z]~N also. (Why?)



(3) Define A = {( € €C: (is aroot of f(x) for some f(x) € Q[z]\{0}}.
The elements of A are called algebraic numbers (over Q).
The elements of C\A\ are called transcendental numbers (over Q).
A~N.
Justification:

e For any f(x) € Q|x]\{0}, define Z[f(x)] = {¢ € C: ( is a root of f(x)}.
(Z|f(x)] is the set of all roots of f(x) in C.)
Z|f(x)] is finite, and hence Z|f(x)]<N.
Since Q[x]\{0} is countably infinite, we may ‘arrange’ all the elements of Q|x]\{0} as
an infinite sequence without repeating terms { f,,(x)}>2, so that

Qz\{0} = {/fu() | n € N}.

Now A = OLjO Z|fn(x)]. Then ASN.
Note that N<A\. Therefore we have A~N.

Remark. It follows that A < Cand AN R < RR.
There are real /complex numbers which are not algebraic; actually there are much more
(real /complex) transcendental numbers than there are (real/complex) algebraic numbers.

This is a non-constructive prootf of the existence of transcendenal numbers.



6. N is the ‘smallest’ infinite set.
By Cantor’s Theorem, we have N < B(N) < BCR(N)) < - - -

Two further questions on the ‘chain’ N < B(N) < BCERN)) < ---

Question (1).
Is there a set of cardinality greater than each of N, SB(N), B(P(N)), ... 7
Answer. Yes, one such set is the ‘union’ of all these sets.

To make sense of this set, we need the Axiom of Substitution.



N is the ‘smallest’ infinite set.
By Cantor’s Theorem, we have N < B(N) < BCR(N)) < - - -

Two further questions on the ‘chain’ N < B(N) < BCERN)) < ---

Question (1).

Is there a set of cardinality greater than each of N, B(N), P(P(N)), ... ¢

Question (2).
Is there a set of cardinality greater than N and less than IR?

Answer. Cantor believed there was no such set.

Cantor’s Continuum Hypothesis:
For any set S, if NSSSIR then (S~N or S~IR).

So what are N and IR, really?
Or, what is the respective nature of these two sets?”

This leads us to the foundation of mathematics.

?



