1. Recall:

(a) **Definition.**

Let A, B be sets.

The set Map(A, B) is defined to be the **set of all functions from** A **to** B.

Remark. Map(N, B) is the set of all infinite sequences in B: each $\varphi \in \text{Map}(N, B)$ is the infinite sequence $(\varphi(0), \varphi(1), \varphi(2), ..., \varphi(n), \varphi(n+1), ...)$.

(b) **Example** (ϵ) .

Let A be a set. $\mathfrak{P}(A) \sim \mathsf{Map}(A, \{0, 1\})$.

(c) Theorem (VI).

There is no surjective function from N to $Map(N, \{0, 1\})$.

(d) Corollary (VII).

There is no bijective function from N to Map(N, $\{0,1\}$). (Hence N \uparrow Map(N, $\{0,1\}$).)

(e) **Theorem (VIII)**.

Let A be a set. $A \not\sim \mathsf{Map}(A, \{0, 1\})$. $A \not\sim \mathfrak{P}(A)$.

2. Theorem (XIII). (Baby version of Cantor's Theorem.)

 $N < Map(N, \{0, 1\}).$

Proof. [Want to verify: ① N + Map(N, {0,1}). ② N ≤ Map(N, {0,1}).]

By Corollary (VII), $\mathbb{N} \not \sim \mathsf{Map}(\mathbb{N}, \{0, 1\})$.

We now prove that $\mathbb{N} \lesssim \mathsf{Map}(\mathbb{N}, \{0, 1\})$:

• For any $n \in \mathbb{N}$, define $\delta_n : \mathbb{N} \longrightarrow \{0, 1\}$ by

$$\delta_n(k) = \begin{cases} 1 & \text{if } k = n \\ 0 & \text{if } k \neq n \end{cases}$$

(0,1): $1 \longrightarrow \{0,1\} \text{ by}$ $\delta_n(k) = \begin{cases} 1 & \text{if } k=n \\ 0 & \text{if } k \neq n \end{cases}$ The infinite sequence δ_n is explicitly given by $\delta_n(k) = \begin{cases} 1 & \text{if } k \neq n \end{cases}$ $\delta_n(k) = \begin{cases} 1 & \text{if } k \neq n \end{cases}$

Define $\Delta: \mathbb{N} \longrightarrow \mathsf{Map}(\mathbb{N}, \{0, 1\})$ by $\Delta(n) = \delta_n$ for any $n \in \mathbb{N}$.

 Δ is an injective function. (Why?)

Hence $\mathbb{N} \lesssim \mathsf{Map}(\mathbb{N}, \{0, 1\})$.

We now have $\mathbb{N} \lesssim \mathsf{Map}(\mathbb{N}, \{0, 1\})$ and $\mathbb{N} \not \sim \mathsf{Map}(\mathbb{N}, \{0, 1\})$. It follows that $\mathbb{N} < \mathsf{Map}(\mathbb{N}, \{0, 1\})$.

3. Theorem (XIV). (Cantor's Theorem.)

Suppose A is a set. Then $A < \mathsf{Map}(A, \{0, 1\})$, and $A < \mathfrak{P}(A)$.

Proof.

Let A be a set. By Theorem (VIII), $A \nsim \mathsf{Map}(A, \{0, 1\})$.

We prove that $A \lesssim \mathsf{Map}(A, \{0, 1\})$:

• Recall that for any $x \in A$, the function $\chi_{\{x\}}^A : A \longrightarrow \{0,1\}$ is given by

$$\chi_{\{x\}}^A(y) = \begin{cases} 1 & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

Define the function $\Delta: A \longrightarrow \mathsf{Map}(A, \{0, 1\})$ by $\Delta(x) = \chi_{\{x\}}^A$ for any $x \in A$. Δ is an injective function from A to $\mathsf{Map}(A, \{0, 1\})$. (Why?) Hence $A \lesssim \mathsf{Map}(A, \{0, 1\})$.

We now have $A \lesssim \mathsf{Map}(A, \{0, 1\})$ and $A \not \sim \mathsf{Map}(A, \{0, 1\})$. It follows that $A < \mathsf{Map}(A, \{0, 1\})$.

Since $\mathfrak{P}(A) \sim \mathsf{Map}(A, \{0, 1\})$, we have $A < \mathfrak{P}(A)$. (Why?)

4. Question. Note that $\mathbb{Q} \lesssim \mathbb{R}$. Is it true that $\mathbb{Q} \sim \mathbb{R}$, or that $\mathbb{Q} < \mathbb{R}$?

Lemma (XV).

Let A, B, C be sets. Suppose $A \lesssim B$ and $B \lesssim C$. Also suppose A < B or B < C. Then A < C.

Proof. [Needed it the argument: Schröder-Bernstein Theorem. 'Let H, K be sets. Suppose HEK and K E.H. Then H-K.]

Let A, B, C be sets. Suppose $A \lesssim B$ and $B \lesssim C$. Also suppose A < B or B < C.

Since $A \lesssim B$ and $B \lesssim C$, we have $A \lesssim C$.

Since A < B or B < C, we have $A \not \sim B$ or $B \not \sim C$. We verify that $A \not \sim C$:

• Suppose it were true that $A \sim C$. Then $C \lesssim A$. [We try to deduce $A \sim B$ and $B \sim C$.]

Since $B \lesssim C$ and $C \lesssim A$, we would have $B \lesssim A$.

Then, since $A \lesssim B$ and $B \lesssim A$, we would have $A \sim B$. (Why?)

Since $C \lesssim A$ and $A \lesssim B$, we would have $C \lesssim B$.

Then, since $B \lesssim C$ and $C \lesssim B$, we would have $B \sim C$. (Why?)

Hence $A \sim B$ and $B \sim C$. But by assumption, $A \not\sim B$ or $B \not\sim C$. Contradiction arises. Hence $A \not\sim C$ in the first place.

Then, since $A \lesssim C$ and $A \not\sim C$, we have A < C.

Question. Note that $\mathbb{Q} \leq \mathbb{R}$. Is it true that $\mathbb{Q} \sim \mathbb{R}$, or that $\mathbb{Q} < \mathbb{R}$?

Lemma (XV).

Let A, B, C be sets. Suppose $A \lesssim B$ and $B \lesssim C$. Also suppose A < B or B < C. Then A < C.

Theorem (XVI).

 $\mathbb{N} < [0,1]$, and $\mathbb{N} < \mathbb{R}$, and $\mathbb{Q} < \mathbb{R}$.

Proof.

 $N \lesssim Map(N, \{0, 1\}) \lesssim Map(N, [0, 9]) \sim [0, 1] \sim R.$

Also, $N < Map(N, \{0, 1\})$.

Then, by Lemma (XV), $\mathbb{N} < [0, 1]$ and $\mathbb{N} < \mathbb{R}$.

Since $\mathbb{Q} \sim \mathbb{N}$, we also have $\mathbb{Q} < \mathbb{R}$.

Remark.

Hence there are much much more real numbers than there are rational numbers.

5. Question. Why are 'Venn diagram arguments' not good enough?

Theorem (XVII.)

There exists some set T such that S < T for any subset S of \mathbb{R}^2 .

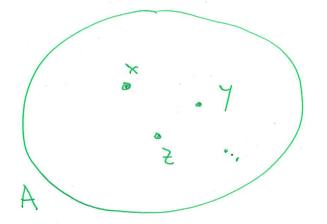
Proof.

Define $T = \mathfrak{P}(\mathbb{R})$.

Pick any subset S of \mathbb{R}^2 . We have $S \lesssim \mathbb{R}^2 \sim \mathbb{R}$.

By Cantor's Theorem, $\mathbb{R} < \mathfrak{P}(\mathbb{R}) = T$.

Then by Lemma (XV), we have S < T.


Remark.

When we draw a Venn diagram for a set, say, A, we are 'identifying' the set A with some subset, say, B, of \mathbb{R}^2 , in the sense that the elements of A are 'identified' as the points in B, via some bijective function from A to B.

This bijective function guarantees that distinct elements of A are identified as distinct points of B. So we are implicitly assuming that there is an injective function from A to \mathbb{R}^2 .

But now we know that there are sets which are too 'large' to be draw in a Venn diagram.

Question: What is implicit in such a Venn diagram of the set A-{x,y,z,...}?

Answer: We are implicitly assuming that there is an injective function of from the set A to some subset B of IR (on which we present the picture:

6. Question.

Is there any 'universal set', which contains every conceivable object as its element?

Theorem (XVIII).

Denote $\{x \mid x = x\}$ by U. The mathematical object U is not a set.

Proof.

Suppose U were a set. Then, by Cantor's Theorem, $U < \mathsf{Map}(U, \{0, 1\})$.

For any $\varphi \in \mathsf{Map}(U, \{0, 1\})$, we would have $\varphi = \varphi$, and hence $\varphi \in U$.

It would follow that $\mathsf{Map}(U, \{0, 1\}) \subset U$.

Then $\mathsf{Map}(U,\{0,1\}) \lesssim U$. Therefore $U < \mathsf{Map}(U,\{0,1\}) \lesssim U$.

By Lemma (XV), U < U. In particular, $U \not \sim U$. There would be no bijective function from U to U.

But id_U is a bijective function from U to U. Contradiction arises.

Hence U is not a set in the first place.

Remark.

Hence if we insist Cantor's Theorem to be a true statement, then there is no such thing as a 'universal set'. This is known as **Cantor's Paradox**.

Contor's Paradox Denote }x | x=x} by U. U D not a set. Otherwise U of U, or Cantor's Theorem fails to hold for U.) Russell's Pouradox

Denote {x | x \in x \in x \} by R. R D not a set. (Deherwise RER'is false) and RER'is false.)