1. **Definition**.

Let A, B be sets.

The set Map(A, B) is defined to be the set of all functions from A to B. Remark.

Map(N, B) is the set of all infinite sequences in B:

each $\varphi \in \mathsf{Map}(\mathbb{N},B)$ is the infinite sequence

 $(\varphi(0),\varphi(1),\varphi(2),...,\varphi(n),\varphi(n+1),...),$

with each term being an element of B.

2. A basic example of unequal cardinality: $\mathbb{N} \neq \mathsf{Map}(\mathbb{N}, \{0, 1\})$.

Theorem (VI).

There is no surjective function from N to $Map(N, \{0, 1\})$.

Corollary (VII).

There is no bijective function from N to $Map(N, \{0, 1\})$.

3. Idea in the proof of Theorem (VI).

Suppose there were some surjective function, say, Φ , from N to $Map(N, \{0, 1\})$.

We look for a contradiction against this false assumption.

For each $n \in \mathbb{N}$, the mathematical object $\Phi(n)$ is an infinite sequence in $\{0, 1\}$.

Since Φ was surjective, *every* infinite sequence in $\{0, 1\}$ would *appear somewhere* in the (infinite) list of infinite sequences

$$\begin{split} \Phi(0) &= ((\Phi(0))(0), (\Phi(0))(1), (\Phi(0))(2), (\Phi(0))(3), \cdots), \\ \Phi(1) &= ((\Phi(1))(0), (\Phi(1))(1), (\Phi(1))(2), (\Phi(1))(3), \cdots), \\ \Phi(2) &= ((\Phi(2))(0), (\Phi(2))(1), (\Phi(2))(2), (\Phi(2))(3), \cdots), \\ \Phi(3) &= ((\Phi(3))(0), (\Phi(3))(1), (\Phi(3))(2), (\Phi(3))(3), \cdots), \\ \vdots & \vdots \end{split}$$

Out of this list of infinite sequences, we construct an *extra* infinite sequence in $\{0, 1\}$ which would *not appear* in this list. This is the desired contradiction.

The method of construction for this extra sequence is known as **Cantor's diagonal argument**.

4. Illustration of Cantor's diagonal argument through a 'specific' Φ.
Here Φ : N → Map(N, {0, 1}) is supposed to be surjective.
For the sake of illustration, assume that Φ(0), Φ(1), Φ(2), Φ(3), Φ(4), Φ(5), ... are:

List all the terms of $\Phi(0), \Phi(1), \Phi(2), \Phi(3), \Phi(4), \Phi(5), \cdots$ row by row in this 'infinite' table:

n	$\Phi(n)$	$(\Phi(n))(0)$	$(\Phi(n))(1)$	$(\Phi(n))(2)$	$(\Phi(n))(3)$	$(\Phi(n))(4)$	$(\Phi(n))(5)$	•••		
0	$\Phi(0)$							•••		
1	$\Phi(1)$							•••		
2	$\Phi(2)$							•••		
3	$\Phi(3)$							•••		
4	$\Phi(4)$							•••		
5	$\Phi(5)$							•••		
:	:	:	:	:	:	:	:	۰.	:	•
???								•••		

What do we expect for this table by virture of the surjectivity of Φ ?

Illustration of Cantor's diagonal argument through a 'specific' Φ . Here $\Phi : \mathbb{N} \longrightarrow \mathsf{Map}(\mathbb{N}, \{0, 1\})$ is supposed to be surjective. For the sake of illustration, assume that $\Phi(0), \Phi(1), \Phi(2), \Phi(3), \Phi(4), \Phi(5), ...$ are:

$$\Phi(0) = (0, 0, 1, 1, 1, 1, 1, \cdots), \qquad \Phi(3) = (1, 1, 1, 0, 0, 0, \cdots),
\Phi(1) = (0, 1, 0, 0, 1, 0, \cdots), \qquad \Phi(4) = (0, 1, 1, 0, 0, 1, \cdots),
\Phi(2) = (1, 0, 1, 1, 1, 0, \cdots), \qquad \Phi(5) = (1, 1, 0, 0, 1, 1, \cdots), \qquad \dots \dots \dots$$

List all the terms of $\Phi(0)$, $\Phi(1)$, $\Phi(2)$, $\Phi(3)$, $\Phi(4)$, $\Phi(5)$, \cdots row by row in this 'infinite' table:

	n	$\Phi(n)$	$\Phi(n))(0)$	$(\Phi(n))(1)$	$(\Phi(n))(2)$	$(\Phi(n))(3)$	$(\Phi(n))(4)$	$(\Phi(n))(5)$				
(0	$\Phi(0)$	0	0	1	1	1	1		-		
	1	$\Phi(1)$	0	1	0	0	1	0				
	2	$\Phi(2)$	1	0	1	1	1	0	• • •			
X	3	$\Phi(3)$	1	1	1	0	0	0			с. С	
	4	$\Phi(4)$	0	1	1	0	0	1				
	5	$\Phi(5)$	1	1	0	0	1	1				
	:		:	÷	:	:	:	:	۰.	:	÷	
	??'	?		5	8. ₁₁	7	-	×				

Because Φ is surjective, we expect every infinite binary sequence turns up somewhere amongst the rows of this table.

Illustration of Cantor's diagonal argument through a 'specific' Φ . Here $\Phi : \mathbb{N} \longrightarrow \mathsf{Map}(\mathbb{N}, \{0, 1\})$ is supposed to be surjective. For the sake of illustration, assume that $\Phi(0), \Phi(1), \Phi(2), \Phi(3), \Phi(4), \Phi(5), ...$ are:

$$\begin{array}{c|c}
\Phi(0) = (0, 0, 1, 1, 1, 1, 1, \cdots), \\
\Phi(1) = (0, 1, 0, 0, 1, 0, \cdots), \\
\Phi(2) = (1, 0, 1, 1, 1, 0, \cdots), \\
\end{array}$$

$$\begin{array}{c|c}
\Phi(3) = (1, 1, 1, 0, 0, 0, \cdots), \\
\Phi(4) = (0, 1, 1, 0, 0, 1, \cdots), \\
\Phi(5) = (1, 1, 0, 0, 1, 1, \cdots), \\
\end{array}$$

List all the terms of $\Phi(0)$, $\Phi(1)$, $\Phi(2)$, $\Phi(3)$, $\Phi(4)$, $\Phi(5)$, \cdots row by row in this 'infinite' table:

	n	$\Phi(n)$	$(\Phi(n))(0)$	$(\Phi(n))(1)$	$(\Phi(n))(2)$	$(\Phi(n))(3)$	$(\Phi(n))(4)$	$(\Phi(n))(5)$		diagonal	'reversi'		
ø	0	$\Phi(0)$	0	0	1	1	. 1	1		0	1) Flip' the	
	1	$\Phi(1)$	0		0	0	1	0		1	0	respective	
	2	$\Phi(2)$	1	0		1	1	0		1	0	entries in	
	3	$\Phi(3)$	1	1	1	\bigcirc	0	0	•••	0	1	the 'diagonal	
	4	$\Phi(4)$	0	1	1	0	0	1		0	1	column'.	
	5	$\Phi(5)$	1	1	0	0	1			1	0		
		:		:	:	:	:	i	\langle	- -	: ,		
	???	- 2- 		4									
		1		Study	the diagon	ral of this	table.		- J				

Because Φ is surjective, we expect every infinite binary sequence turns up somewhere amongst the rows of this table.

Illustration of Cantor's diagonal argument through a 'specific' Φ . Here $\Phi : \mathbb{N} \longrightarrow \mathsf{Map}(\mathbb{N}, \{0, 1\})$ is supposed to be surjective. For the sake of illustration, assume that $\Phi(0), \Phi(1), \Phi(2), \Phi(3), \Phi(4), \Phi(5), ...$ are:

List all the terms of $\Phi(0)$, $\Phi(1)$, $\Phi(2)$, $\Phi(3)$, $\Phi(4)$, $\Phi(5)$, \cdots row by row in this 'infinite' table:

n	$\Phi(n$	(n)	$(\Phi(n))(0)$	$(\Phi(n))(1)$	$(\Phi(n))(2)$	$(\Phi(n))(3)$	$(\Phi(n))(4)$	$(\Phi(n))(5)$		diagonal	'reversi'
0	$\Phi(0$))	0	0	1	1	1	1		0	1
1	$\Phi(1$)	0	1	0	0	1	0		1	0
2	$\Phi(2$	2)	. 1	0	1	1	. 1	0		1	0
3	$\Phi(3$	3)	1	1	1	0	0	0		0	1
4	$\Phi(4$	E)	0	1	1	0	0	1		0	1
5	$\Phi(5$	5)	1	1	0	0	1	1		1	0
:	:		* 1	:	:	:	:	:	· · .	E	:
??	? λ		1	0	0	1	1	0			
'Transpose'	of the -	A "	4 入(0)	Φ λ(ι)	4 λ(2)	个 入(3)	↑ λ(4)	↑ 入(5)	•	+ λ is certa binary sequ	inly an infinite ence.
Be	Because Φ is surjective, we expect every infinite binary sequence turns up somewhere										
am	amongst the rows of this table. But how about λ ? Nowhere. Why?!										

Question.

• Is there any $z \in \mathbb{N}$ which satisfies $\Phi(z) = \lambda$, really?

Answer.

• Since $\lambda(0)$ is obtained by the 'flip' of $(\Phi(0))(0)$, λ does not agree with $\Phi(0)$ at the 0-th term. Hence $\lambda \neq \Phi(0)$.

Since $\lambda(1)$ is obtained by the 'flip' of $(\Phi(1))(1)$, λ does not agree with $\Phi(1)$ at the 1-st term. Hence $\lambda \neq \Phi(1)$

Since $\lambda(n)$ is obtained by the 'flip' of $(\Phi(n))(n)$, λ does not agree with $\Phi(n)$ at the *n*-th term. Hence $\lambda \neq \Phi(n)$. Et cetera.

Hence λ is not amongst $\Phi(0)$, $\Phi(1)$, $\Phi(2)$, $\Phi(3)$, $\Phi(4)$, $\Phi(5)$, ...

This λ is the '*extra*' infinite sequence 'generated' by this 'specific' Φ according to Cantor's diagonal argument.

(No matter which 'specific' Φ we start with, the procedure described above will give you a corresponding 'troublesome' λ . Try your own favourite 'concrete' $\Phi(0)$, $\Phi(1)$, $\Phi(2)$, $\Phi(3)$, $\Phi(4)$, $\Phi(5)$, ..., go through the procedure described above, and have fun.)

5. Formal argument for Theorem (VI).

Suppose there were some surjective function $\Phi : \mathbb{N} \longrightarrow \mathsf{Map}(\mathbb{N}, \{0, 1\})$. Define the function $\lambda : \mathbb{N} \longrightarrow \{0, 1\}$ by

$$\lambda(x) = \begin{cases} 1 & \text{if } (\Phi(x))(x) = 0\\ 0 & \text{if } (\Phi(x))(x) = 1 \end{cases}$$

(Is λ well-defined as a function?)

Since Φ was surjective, there would be some $z \in \mathbb{N}$ so that $\Phi(z) = \lambda$.

However, by definition, we have $(\Phi(z))(z) \neq \lambda(z)$.

Therefore $\lambda \neq \Phi(z)$. Contradiction arises.

Hence there is no surjective function from N to $Map(N, \{0, 1\})$ in the first place.

6. Theorem (VIII).

Let A be a set. The following statements hold:

(1) There is no surjective function from A to $Map(A, \{0, 1\})$.

(2) There is no bijective function from A to $Map(A, \{0, 1\})$.

 $(3) A \not\leftarrow \mathsf{Map}(A, \{0, 1\}).$

Proof.

The proof for Statement (1) in Theorem (VIII) is almost the same as that for Theorem (VI): just replace \mathbb{N} by A in the formal proof for Theorem (VI). Statements (2), (3) follow immediately from Statement (1).

Proof of Statement (1) in Theorem (VIII).

Formal argument for Theorem (VI).

Suppose there were some surjective function $\Phi : \mathcal{M} \longrightarrow \mathsf{Map}(\mathcal{M}, \{0, 1\}).$ Define the function $\lambda : \mathcal{M} \longrightarrow \{0, 1\}$ by

$$\lambda(x) = \begin{cases} 1 & \text{if } (\Phi(x))(x) = 0 \\ 0 & \text{if } (\Phi(x))(x) = 1 \end{cases}$$

(Is λ well-defined as a function?)

Since Φ was surjective, there would be some $z \in \mathbb{K}$ so that $\Phi(z) = \lambda$. However, by definition, we have $(\Phi(z))(z) \neq \lambda(z)$.

Therefore $\lambda \neq \Phi(z)$. Contradiction arises.

Hence there is no surjective function from \mathcal{K} to $Map(\mathcal{K}, \{0, 1\})$ in the first place.

Theorem (VIII).

Let A be a set. The following statements hold:

(1) There is no surjective function from A to Map(A, {0,1}).
(2) There is no bijective function from A to Map(A, {0,1}).
(3) A ↓ Map(A, {0,1}).

Another formulation of Theorem (VIII).

Let A be a set. The following statements hold:

(1) There is no surjective function from A to 𝔅(A).
(2) There is no bijective function from A to 𝔅(A).
(3) A ↓ 𝔅(A).

Why? How?
Recall that
$$P(A) \sim Map(A, \{0, 1\})$$
.
 $\chi: P(A) \rightarrow Map(A, \{0, 1\})$ show by
 $\chi^{A}(S) = \chi^{A}_{S}$ for any $S \in P(A)$
is a bijective function.