1. Definition.

Let A, B be sets. We say that A is of cardinality equal to B if there is a bijective function from A to B. We write $A \sim B$.

Remark on notation. Where A is not of cardinality equal to B, we write $A \downarrow B$.

2. Theorem (I). (Properties of \sim .)

- (1) Suppose A is a set. Then $A \sim \emptyset$ iff $A = \emptyset$.
- (2) Suppose x, y are objects. Then $\{x\} \sim \{y\}$.
- (3) Let A, B, C be sets. The following statements hold:
 - (3a) $A \sim A$.
 - (3b) Suppose $A \sim B$. Then $B \sim A$.
 - (3c) Suppose $A \sim B$ and $B \sim C$. Then $A \sim C$.
- (4) Let A, B, C, D be sets. The following statements hold:
 - (4a) Suppose $A \sim C$ and $B \sim D$. Then $A \times B \sim C \times D$.
 - (4b) Suppose $A \sim C$. Then $\mathfrak{P}(A) \sim \mathfrak{P}(C)$.
 - (4c) Suppose $A \sim C$ and $B \sim D$. Then $\mathsf{Map}(A, B) \sim \mathsf{Map}(C, D)$.

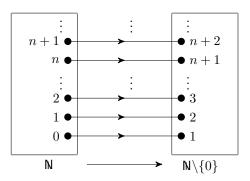
Remarks.

- According to (3), ~ defines an equivalence relation in the power set of any given set.
- In (4), Map(A, B) is the set of all functions from A to B.

3. Example (α) .

 $\mathbb{N} \sim \mathbb{N} \setminus \{0\}.$

(a) Idea.



This is the 'blobs-and-arrows' diagram for a certain bijective function, which we denote by f here, but how to write down this f explicitly?

It is the function $f: \mathbb{N} \longrightarrow \mathbb{N} \setminus \{0\}$ whose graph is $\{(x, x+1) \mid x \in \mathbb{N}\}$ respectively.

Its 'formula of definition' is given by f(x) = x + 1 for any $x \in \mathbb{N}$.

(b) Formal argument.

Let
$$F = \{(x, x + 1) \mid x \in \mathbb{N}\}.$$

(Very formally presented, we have $F = \{p \mid \text{There exists some } x \in \mathbb{N} \text{ such that } p = (x, x + 1).\}.$)

Note that $F \subset \mathbb{N} \times (\mathbb{N} \setminus \{0\})$.

Define $f = (\mathbb{N}, \mathbb{N} \setminus \{0\}, F)$.

f is a relation from N to $\mathbb{N}\setminus\{0\}$.

Now we proceed to verify that f is a bijective function:

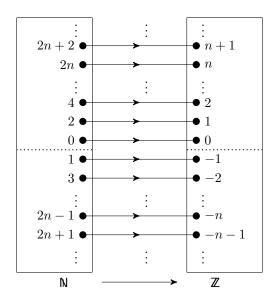
- * Pick any $x \in \mathbb{N}$. Take y = x + 1. Since $x, 1 \in \mathbb{N}$, we have $y \in \mathbb{N}$. Moreover, $y = x + 1 \ge 0 + 1 > 0$. Then $y \in \mathbb{N} \setminus \{0\}$. By definition, $(x, y) \in F$.
- * Pick any $x \in \mathbb{N}$. Pick any $y, z \in \mathbb{N} \setminus \{0\}$. Suppose $(x, y) \in F$ and $(x, z) \in F$. Since $(x, y) \in F$, there exists some $u \in \mathbb{N}$ such that (x, y) = (u, u + 1). Since $(x, z) \in F$, there exists some $v \in \mathbb{N}$ such that (x, z) = (v, v + 1). Now we have u = x = v. Then y = u + 1 = v + 1 = z.

- * Hence $f: \mathbb{N} \longrightarrow \mathbb{N} \setminus \{0\}$ is indeed a function, given by f(x) = x + 1 for any $x \in \mathbb{N}$.
- * Pick any $y \in \mathbb{N} \setminus \{0\}$. Take x = y 1. Since $y, 1 \in \mathbb{Z}$, we have $x \in \mathbb{Z}$. Since $y \ge 1$, we have $x = y 1 \ge 0$. Then $x \in \mathbb{N}$. By definition, f(x) = x + 1 = (y 1) + 1 = y.
- * Pick any $w, x \in \mathbb{N}$. Suppose f(x) = f(w). Then x 1 = w 1. Therefore w = x.
- * It follows that f is a bijective function from \mathbb{N} to $\mathbb{N}\setminus\{0\}$.

4. Example (β) .

 $\mathbb{N}{\sim}\mathbb{Z}$.

(a) Idea.



(b) Formal argument.

Let $F_1 = \{(2x, x) \mid x \in \mathbb{N}\}, F_2 = \{(2x - 1, -x) \mid x \in \mathbb{N} \setminus \{0\}\}, \text{ and } F = F_1 \cup F_2.$

Note that $F \subset \mathbb{N} \times \mathbb{Z}$.

Define $f = (\mathbb{N}, \mathbb{Z}, F)$. f is a relation from \mathbb{N} to \mathbb{Z} .

Now verify that f is a bijective function. (Fill in the details. Theorem (II) may help.)

The 'formula of definition' of the bijective function $f: \mathbb{N} \longrightarrow \mathbb{Z}$ is given by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ -\frac{x+1}{2} & \text{if } x \text{ is odd} \end{cases}$$

5. 'Glueing Lemma'.

Theorem (II). ('Baby version' of 'Glueing Lemma').

Let C, C', D, D' be sets, and g = (C, D, G), g' = (C', D', G') be bijective functions. Suppose $C \cap C' = \emptyset$ and $D \cap D' = \emptyset$. Then $(C \cup C', D \cup D', G \cup G')$ is a bijective function.

Corollary (III).

Let C, C', D, D' be sets. Suppose $C \sim D$ and $C' \sim D'$. Also suppose $C \cap C' = \emptyset$ and $D \cap D' = \emptyset$. Then $C \cup C' \sim D \cup D'$.

Theorem (II) and Corollary (III) may be extended to the situation for infinite sequences of sets and generalized unions:

Theorem (IV). ('Glueing Lemma'.)

Let A, B be sets. Let $\{C_n\}_{n=0}^{\infty}$, $\{D_n\}_{n=0}^{\infty}$ be infinite sequences of subsets of A, B respectively. Let $\{G_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of $A \times B$. Suppose $\{(C_n, D_n, G_n)\}_{n=0}^{\infty}$ is an infinite sequence of bijective functions. Suppose that for any $j, k \in \mathbb{N}$, if $j \neq k$ then $C_j \cap C_k = \emptyset$ and $D_j \cap D_k = \emptyset$. Then $\left(\bigcup_{n=0}^{\infty} C_n, \bigcup_{n=0}^{\infty} D_n, \bigcup_{n=0}^{\infty} G_n\right)$ is a bijective function.

Corollary (V).

Let A, B be sets. Let $\{C_n\}_{n=0}^{\infty}$, $\{D_n\}_{n=0}^{\infty}$ be infinite sequences of subsets of A, B respectively. Suppose that for any $n \in \mathbb{N}$, $C_n \sim D_n$. Also suppose that for any $j, k \in \mathbb{N}$, if $j \neq k$ then $C_j \cap C_k = \emptyset$ and $D_j \cap D_k = \emptyset$. Then $\bigcup_{n=0}^{\infty} C_n \sim \bigcup_{n=0}^{\infty} D_n$.

6. Example (γ) .

 $N \sim N^2$.

Remark. Hence, by Theorem (I) and the result in Example (β) , we have $\mathbb{N}^m \sim \mathbb{N}$ and $\mathbb{Z}^m \sim \mathbb{Z}$ for any $m \in \mathbb{N}^*$.

(a) Idea.

Break up each of \mathbb{N} , \mathbb{N}^2 into many many parts, match the parts with bijective functions, and then 'glue up' these bijective functions to obtain a bijective function from \mathbb{N} to \mathbb{N}^2 .

There are many ways to do it.

(b) Correspondence 1.

We have constructed the bijective function $f_1: \mathbb{N} \longrightarrow \mathbb{N}^2$ below which 'matches' the respective entries at the corresponding positions of the following 'infinite square-arrays' to each other:

$$\begin{vmatrix} 0 & 1 & 4 & 9 & 16 & 25 & \dots \\ 3 & 2 & 5 & 10 & 17 & 26 & \dots \\ 8 & 7 & 6 & 11 & 18 & 27 & \dots \\ 15 & 14 & 13 & 12 & 19 & 28 & \dots \\ 24 & 23 & 22 & 21 & 20 & 29 & \dots \\ 35 & 34 & 33 & 32 & 31 & 30 & \dots \\ | \vdots & \ddots \end{vmatrix} \rightarrow \begin{vmatrix} (0,0) & (1,0) & (2,0) & (3,0) & (4,0) & (5,0) & \dots \\ (0,1) & (1,1) & (2,1) & (3,1) & (4,1) & (5,1) & \dots \\ (0,2) & (1,2) & (2,2) & (3,2) & (4,2) & (5,2) & \dots \\ (0,3) & (1,3) & (2,3) & (3,3) & (4,3) & (5,3) & \dots \\ (0,4) & (1,4) & (2,4) & (3,4) & (4,4) & (5,4) & \dots \\ (0,5) & (1,5) & (2,5) & (3,5) & (4,5) & (5,5) & \dots \end{vmatrix}$$

(c) Correspondence 2.

We have constructed the bijective function $f_2: \mathbb{N} \longrightarrow \mathbb{N}^2$ below which 'matches' the respective entries at the corresponding positions of the following 'infinite square-arrays' to each other:

(d) Correspondence 3.

Define $g: \mathbb{N}^2 \longrightarrow \mathbb{N} \setminus \{0\}$ by $g(x,y) = 2^y(2x+1)$ for any $x,y \in \mathbb{N}$. g is a bijective function. g sets up the following 'exact correspondence' from \mathbb{N}^2 to $\mathbb{N} \setminus \{0\}$:

Define $h: \mathbb{N}\setminus\{0\} \longrightarrow \mathbb{N}$ by h(w) = w-1 for any $w \in \mathbb{N}\setminus\{0\}$. h is a bijective function. Now $h \circ g$ is a bijective function from \mathbb{N}^2 to \mathbb{N} , given by $(h \circ g)(x,y) = 2^y(2x+1) - 1$ for any $x,y \in \mathbb{N}$.

7. Example (δ) .

Suppose I is an interval with more than one point. Then $I \sim \mathbb{R}$.

- Outline of argument:
 - (a) Suppose I is 'finite at both ends'. Deduce:
 - (a1) $I \sim [0, 1]$ if I is closed.

- (a2) $I \sim [0, 1)$ if I is half-closed-half-open.
- (a3) $I\sim(0,1)$ if I is open.
- (b) Suppose $I \neq \mathbb{R}$ and I is not 'finite at both ends'. Deduce:
 - (b1) $I \sim [0, +\infty)$ if I is closed.
 - (b2) $I \sim (0, +\infty)$ if I is open.
- (c) Deduce that $[0,1] \sim [0,1)$. Similarly deduce that $[0,1] \sim (0,1)$.
- (d) Deduce that $(0,1)\sim(0,+\infty)$. Similarly deduce that $[0,1)\sim[0,+\infty)$.
- (e) Deduce that $(0,1) \sim \mathbb{R}$.
- Respective arguments for (a), (b): Make use of 'linear functions'.

Respective arguments for (d), (e): Make use of 'rational functions'.

Argument for (c)? This is non-trivial.

Argument for (c):

• Idea.

[0,1) is almost the whole of [0,1] except that it 'misses' the point 1. Try to 'modify' the identity function from [0,1] to [0,1] to get a bijective function from [0,1] to [0,1).

• Trick.

Dig many many holes in [0,1], [0,1) at identical positions so that after this digging, what remain of these two sets are the same set.

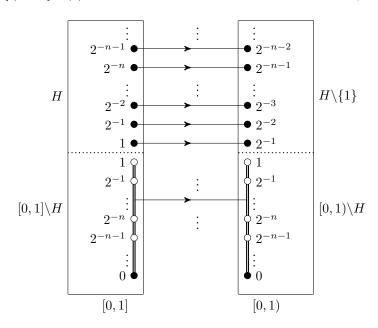
(But what to do with the 'debris'? Don't throw them away.)

$$\text{Take } H = \left\{ \left. \frac{1}{2^n} \; \right| \; n \in \mathbb{N} \right\}. \text{ It is the set of all terms of the strictly decreasing infinite sequence } \left\{ \frac{1}{2^n} \right\}_{n=0}^{\infty} \text{ in } [0,1].$$

Except its zero-th term, every term is in [0, 1).

Now draw the 'blobs-and-arrows diagram' as described here

- * Match 1 in [0,1] with $\frac{1}{2}$ in [0,1). Match $\frac{1}{2}$ in [0,1] with $\frac{1}{4}$ in [0,1). Match $\frac{1}{4}$ in [0,1] with $\frac{1}{8}$ in [0,1). ... Match $\frac{1}{2^n}$ in [0,1] with $\frac{1}{2^{n+1}}$ in [0,1). Match $\frac{1}{2^{n+1}}$ in [0,1] with $\frac{1}{2^{n+2}}$ in [0,1). Et cetera.
- * Now note that $[0,1]\backslash H=[0,1)\backslash H$. So we match these two sets with the identity function.



• Formal argument.

Define
$$H = \left\{ \frac{1}{2^n} \mid n \in \mathbb{N} \right\}$$
. Note that $[0,1] \backslash H = [0,1) \backslash H$.

Define
$$F_1 = \{(x, x) \mid x \in [0, 1] \setminus H\}$$
 and $F_2 = \{(x, \frac{x}{2}) \mid x \in H\}$ and $F = F_1 \cup F_2$.

Verify that $f_1 = ([0,1]\backslash H, [0,1)\backslash H, F_1), f_2 = (H, H\backslash \{1\}, F_2)$ are bijective functions. (Fill in the detail.)

Define f = ([0, 1], [0, 1), F). f is a relation. f is a bijective function according to the 'Glueing Lemma'.

• The argument for $[0,1)\sim(0,1)$ is similar.

8. Example (ϵ) .

Suppose A is a set. Then $\mathfrak{P}(A) \sim \mathsf{Map}(A, \{0, 1\})$.

Remark. Map $(A, \{0, 1\})$ is the set of all functions from A to $\{0, 1\}$.

(a) *Idea* (through one example).

Let $A = \{p, q, r\}$, where p, q, r are pairwise distinct.

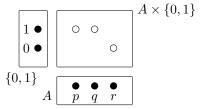
'Light bulb' analogy:

- * Imagine p, q, r are points on the plane, and a light bulb is fixed at each of p, q, r.
- * When a subset S of A is named, we turn on the lights at the corresponding elements of S. The light-bulbs at the elements of S go to 'on-state' (denoted by '1').

The 'light-bulbs' at the elements of $A \setminus S$ remain in the 'off-state' (denoted by '0').

This give an 'overall state' of the 'light bulbs' in A according to what S is.

* For instance, when $S = \{p, q\}$, the lightbulbs at p, q are 'on' and that at r remains 'off'. We may represent this overall state in such a diagram:



- * Such a diagram is in fact a graph of the function from A to $\{0,1\}$. (When $S = \{p,q\}$, the function concerned assigns p,q,r to 1,1,0 respectively.)
- $*\ Observation.$

Each individual element of $\mathfrak{P}(A)$ corresponds to exactly one 'overall state' of the "light-bulbs" in A. So we have a 'natural' 'exact correspondence' between the subsets of A and the functions from A to $\{0,1\}$ (as visualized by their respective graphs).

Subsets	Functions from A to $\{0,1\}$,	Subsets of A	Functions from A to $\{0,1\}$,
of A	represented by their graphs	OI A	represented by their graphs
26 26 26 Ø	$ \begin{bmatrix} 1 & \bullet \\ 0 & \bullet \end{bmatrix} $ $ \begin{array}{c} \bullet & \bullet & \bullet \\ p & q & r \end{array} $ $A \times \{0, 1\}$		$\begin{bmatrix} 1 \bullet \\ 0 \bullet \end{bmatrix} \bigcirc \bigcirc \bigcirc A \times \{0, 1\}$ $\{0, 1\}$ $A \boxed{\begin{matrix} \bullet \bullet \bullet \\ p q r \end{matrix}}$
	$\begin{bmatrix} 1 & \bullet & & & \\ 0 & \bullet & & & & \\ & & \circ & & \bullet & \\ & & & A & & p & q & r \end{bmatrix} A \times \{0, 1\}$	$ \begin{bmatrix} \mathbb{A} & \textcircled{0} & \textcircled{0} \\ q & r \end{bmatrix} $ $ \{q, r\} $	$\begin{bmatrix} 1 & \bullet & & & & \\ 0 & \bullet & & & & \\ & & A & & p & q & r \end{bmatrix} A \times \{0, 1\}$
$ \begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{bmatrix} 1 & \bullet & & & \\ 0 & \bullet & & & \\ & & A & & p & q & r \end{bmatrix} A \times \{0, 1\}$	$ \begin{bmatrix} \textcircled{\textcircled{o}} & \text{?:} & \textcircled{\textcircled{o}} \\ p & r \end{bmatrix} $ $ \{p,r\} $	$\begin{bmatrix} 1 \bullet \\ 0 \bullet \end{bmatrix} & \bigcirc & \bigcirc \\ & \bigcirc & \bigcirc \\ & \bigcirc & \bigcirc \\ & A & \boxed{ \begin{matrix} \bullet & \bullet & \bullet \\ p & q & r \end{matrix} } \end{bmatrix}$
	$\begin{bmatrix} 1 & \bullet & & \circ & \\ 0 & \bullet & & \circ & \\ & & & & \bullet & \\ & & & & & P & q & r \end{bmatrix} A \times \{0, 1\}$		$\begin{bmatrix} 1 & \bullet & & & \\ 0 & \bullet & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & $

(b) Formal argument.

Suppose A is a set. Then $A = \emptyset$ or $A \neq \emptyset$.

If $A = \emptyset$ then $(\mathfrak{P}(A) = \{\emptyset\})$ and $\mathsf{Map}(A, \{0, 1\}) = \{(\emptyset, \{0, 1\}, \emptyset)\}$. [Done.]

From now on suppose $A \neq \emptyset$. For each $S \in \mathfrak{P}(A)$, define the function $\chi_S^A : A \longrightarrow \{0,1\}$ by

$$\chi_S^A(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \in A \backslash S. \end{cases}$$

Define the function $f: \mathfrak{P}(A) \longrightarrow \mathsf{Map}(A, \{0,1\})$ by $f(S) = \chi_S^A$ for any $S \in \mathfrak{P}(A)$.

Verify that f is bijective. (Fill in the detail.)

Remark. χ_S^A is called the characteristic function of the set S in the set A.

9. Example (ζ) .

 $Map(N, \{0, 1\}) \sim (Map(N, \{0, 1\}))^2$.

Remark. Map(N, $\{0,1\}$) is the set of all functions from N to $\{0,1\}$.

- Each function $\varphi : \mathbb{N} \longrightarrow \{0,1\}$ is uniquely identified as the binary infinite sequence $(\varphi(0), \varphi(1), \varphi(2), \varphi(3), \cdots)$.
- Each binary infinite sequence $(a_0, a_1, a_2, a_3, \cdots)$ is uniquely identified as the function $a : \mathbb{N} \longrightarrow \{0, 1\}$ given by $a(k) = a_k$ for any $k \in \mathbb{N}$.

Hence $Map(N, \{0, 1\})$ is the set of all binary infinite sequences.

(a) Idea.

Each element of $\mathsf{Map}(\mathsf{N},\{0,1\})$ is a function from N to $\{0,1\}$, and hence is an infinite sequence in $\{0,1\}$.

Is there any natural 'exact correspondence' between infinite sequences in $\{0,1\}$ and ordered pairs of such sequences?

- * Just name any infinite sequence in $\{0,1\}$. For convenience, call it $\{a_n\}_{n=0}^{\infty}$.
- * What do we obtain from $\{a_n\}_{n=0}^{\infty}$ by deleting all terms at 'odd positions?', without changing the ordering of the terms?
- * What do we obtain from $\{a_n\}_{n=0}^{\infty}$ by deleting all terms at 'even positions?', without changing the ordering of the terms?
- * Can we recover the original infinite sequence $\{a_n\}_{n=0}^{\infty}$ from the two resultant infinite sequences?

What can we say about the function from $Map(N, \{0, 1\})$ to $(Map(N, \{0, 1\}))^2$ defined by

$$(a_0, a_1, a_2, a_3, a_4, a_5, \cdots) \longmapsto ((a_0, a_2, a_4, \cdots), (a_1, a_3, a_5, \cdots))$$

for each infinite sequence $\{a_n\}_{n=0}^{\infty}$ in $\{0,1\}$?

(b) Formal argument.

Exercise.

Remarks. More generally, we have:

- (a) $Map(N, \{0, 1\}) \sim (Map(N, \{0, 1\}))^n$ for any $n \in N \setminus \{0\}$.
- (b) $\mathsf{Map}(\mathsf{N},B) \sim (\mathsf{Map}(\mathsf{N},B))^n$ for any $n \in \mathsf{N} \setminus \{0\}$, whenever B is a non-empty set.