- 1. Define the relation $T = (\mathbb{R}, \mathbb{R}, G)$ in \mathbb{R} by $G = \{(x, y) \in \mathbb{R}^2 : \text{There exists some } n \in \mathbb{Z} \text{ such that } y = 2^n x\}.$
 - (a) Verify that T is reflexive.
 - (b) Verify that T is transitive.
 - (c) Verify that T is an equivalence relation in \mathbb{R} .
- 2. Let p be a positive real number. Define the relation $R = (\mathbb{C}, \mathbb{C}, E)$ in \mathbb{C} by

 $E = \{(\zeta, \eta) \in \mathbb{C}^2 : \text{ There exists some } n \in \mathbb{Z} \text{ such that } \eta = \zeta \cdot (\cos(np) + i\sin(np)). \}$

- (a) Verify that R is reflexive.
- (b) Verify that R is transitive.
- (c) Is R an equivalence relation in \mathbb{C} ? Justify your answer.
- 3. Write $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Define the relation $R = (\mathbb{C}^*, \mathbb{C}^*, G)$ in \mathbb{C}^* by

 $G = \{ (\zeta, \eta) \in (\mathbb{C}^*)^2 : \text{ There exists some } n \in \mathbb{Z} \text{ such that } \zeta = \eta \cdot 2^n (\cos(n) + i \sin(n)). \}.$

- (a) Verify that R is reflexive.
- (b) Verify that R is transitive.
- (c) Is R an equivalence relation in \mathbb{C}^* ? Justify your answer.
- 4. Define the relation $T = (\mathbb{R}, \mathbb{R}, G)$ in \mathbb{R} by $G = \{(x, y) \mid x \in \mathbb{R} \text{ and } y \in \mathbb{R} \text{ and } (\text{there exists some } m, n \in \mathbb{Q} \text{ such that } y = 3^m 5^n x)\}.$
 - (a) Verify that T is reflexive.
 - (b) Verify that T is transitive.
 - (c) Verify that T is an equivalence relation in \mathbb{R} .

5. Let A be a set, $G = \{(S,T) \mid S \in \mathfrak{P}(A) \text{ and } T \in \mathfrak{P}(A) \text{ and } S \subset T\}$ and $R = (\mathfrak{P}(A), \mathfrak{P}(A), G)$.

- (a) Verify that R is a partial ordering.
- (b) Suppose A has at least two distinct elements. Verify that R is not a total ordering.
- 6. (a) Let A be the set of all real-valued continuous functions on [0,1]. Define the relation S = (A, A, G) in A by

$$G = \left\{ (f,g) \in A^2 : \int_0^x uf(u)du \le \int_0^x ug(u)du \text{ for any } x \in [0,1] \right\}$$

Is S a partial ordering in A? Justify your answer.

(b) Let B be the set of all real-valued piecewise-continuous functions on [0,1]. Define the relation T = (B, B, H) in B by

$$H = \left\{ (f,g) \in B^2 : \int_0^x uf(u)du \le \int_0^x ug(u)du \text{ for any } x \in [0,1] \right\}.$$

Is T a partial ordering in B? Justify your answer.

7. Define the relation
$$S = (\mathbb{N}^2, \mathbb{N}^2, P)$$
 in \mathbb{N}^2 by $P = \left\{ (u, v) \middle| \begin{array}{l} \text{There exist } m, n, p, q \in \mathbb{N} \text{ such that} \\ u = (m, n), v = (p, q) \text{ and } \frac{2n+1}{2^m} \leq \frac{2q+1}{2^p} \end{array} \right\}$

Here \leq is the usual ordering in \mathbb{R} .

- (a) Verify that S is a partial ordering in \mathbb{N}^2 .
- (b) Is S a total ordering in \mathbb{N}^2 ? Why?

8. Define the relation
$$R = (\mathbb{C}, \mathbb{C}, P)$$
 by $P = \left\{ (\zeta, \eta) \middle| \begin{array}{l} \zeta, \eta \in \mathbb{C} \text{ and} \\ (\operatorname{Re}(\zeta) < \operatorname{Re}(\eta) \text{ or } (\operatorname{Re}(\zeta) = \operatorname{Re}(\eta) \text{ and } \operatorname{Im}(\zeta) \le \operatorname{Im}(\eta))) \end{array} \right\}.$

(a) Let $\zeta, \eta \in \mathbb{C}$.

i. Verify that $(\zeta, \eta) \in P$ iff $(\operatorname{Re}(\zeta) \leq \operatorname{Re}(\eta)$ and $(\operatorname{Re}(\zeta) < \operatorname{Re}(\eta)$ or $\operatorname{Im}(\zeta) \leq \operatorname{Im}(\eta))$.

ii. Verify that $(\zeta, \eta) \notin P$ iff $(\mathsf{Re}(\eta) < \mathsf{Re}(\zeta) \text{ or } (\mathsf{Re}(\eta) \le \mathsf{Re}(\zeta) \text{ and } \mathsf{Im}(\eta) < \mathsf{Im}(\zeta))).$

(b) Verify that R is a total ordering in \mathbb{C} .

Remark. Such a total ordering in \mathbb{C} is known as a **lexicographical ordering**. Think of each complex number as a word with two 'letters', the first 'letter' being its real part and the second 'letter' being its imaginary part respectively. Now how do you arrange such 'two-letter words' in a dictionary?

9. Denote by Σ the set of all infinite sequences in \mathbb{R} . (Recall that each infinite sequence in \mathbb{R} is a function from \mathbb{N} to \mathbb{R} .) Let $k \in \mathbb{N}$. Define the relation $R_k = (\Sigma, \Sigma, E)$ by

$$E = \left\{ (\alpha, \beta) \mid \begin{array}{l} \alpha, \beta \in \Sigma \text{ and there exist some } N \in \mathbb{N}, \ C \ge 0 \\ \text{ such that } (|\alpha(x) - \beta(x)| \le C/x^k \text{ for any } x \ge N). \end{array} \right\}$$

- (a) Verify that R_k is reflexive and symmetric.
- (b) Verify that R_k is an equivalence relation in Σ .
- 10. (a) Let $A = \{0, 1, 2\}, G = \{(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)\}$, and R = (A, A, G). (Here 0, 1, 2 are pairwise distinct objects.)
 - i. Verify that R is not symmetric.
 - ii. Verify that R is not transitive.
 - iii. Verify that R is reflexive.
 - (b) Let $B = \{0, 1\}, H = \{(0, 0), (0, 1), (1, 0)\}, \text{ and } S = (B, B, H).$ (Here 0, 1 are distinct objects.)
 - i. Verify that S is not reflexive.
 - ii. Verify that S is not transitive.
 - iii. Verify that S is symmetric.
 - (c) Let $C = \{0, 1, 2\}, J = \{(0, 1), (1, 2), (0, 2)\}, \text{ and } T = (C, C, J).$ (Here 0, 1, 2 are pairwise distinct objects.)
 - i. Verify that T is not reflexive.
 - ii. Verify that T is not symmetric.
 - iii. Verify that T is transitive.

Remark. Can you construct a relation in a non-empty set which is reflexive and symmetric but not transitive? Can you construct a relation in a non-empty set which is reflexive and transitive but not symmetric? Can you construct a relation in a non-empty set which is symmetric and transitive but not reflexive?

- 11. Dis-prove each of the statements below by giving an appropriate counter-example.
 - (a) Let A be a non-empty set, and R be a relation in A. Suppose R is reflexive and symmetric. Then R is transitive.
 - (b) Let A be a non-empty set, and R be a relation in A. Suppose R is reflexive and transitive. Then R is symmetric.
 - (c) Let A be a non-empty set, and R be a relation in A. Suppose R is symmetric and transitive. Then R is reflexive.
- 12. (a) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is symmetric and transitive. Prove that the statements below are logically equivalent:
 - (\sharp) For any $x \in A$, there exists some $y \in A$ such that $(x, y) \in G$.
 - (b) R is reflexive.
 - (b) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is reflexive. Prove that the statements below are logically equivalent:
 - (#) For any $x, y, z \in A$, if $(x, y) \in G$ and $(y, z) \in G$ then $(z, x) \in G$.
 - (b) R is symmetric and transitive.
 - (c) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is reflexive. Prove that the statements below are logically equivalent:
 - (#) For any $x, y, z \in A$, if $(x, y) \in G$ and $(x, z) \in G$ then $(y, z) \in G$.
 - (b) R is symmetric and transitive.

- 13. Let A be a set, F be a subset of A^2 , and f = (A, A, F). Suppose f is a function from A to A. (Also think of f as a relation in A.) Prove the statements below:
 - (a) If f is reflexive as a relation in A then $f = id_A$.
 - (b) If f is transitive as a relation in A then $f \circ f = f$ as functions.
 - (c) If f is transitive as a relation in A and f is injective as a function then $f = id_A$.
 - (d) If f is both symmetric and transitive as a relation in A then $f = id_A$.

14. We introduce the definition below:

Let A, B be sets, f : A → B be a function, and Q be a relation in B with graph H.
Define the subset f*H of A² by f*H = { (x,w) | x ∈ A and w ∈ A and (f(x), f(w)) ∈ H }.
The relation (A, A, f*H) is called **pull-back relation** of Q by f. It is denoted by f*Q in A.

Let A, B be sets, $f : A \longrightarrow B$ be a function, and Q be a relation in B with graph H. Prove the statements below:

- (a) Suppose Q is reflexive. Then f^*Q is reflexive.
- (b) Suppose Q is symmetric. Then f^*Q is symmetric.
- (c) Suppose Q is transitive. Then f^*Q is transitive.
- (d) Suppose Q is an equivalence relation. Then f^*Q is an equivalence relation.
- (e) Suppose f^*Q is an equivalence relation and f is surjective. Then Q is an equivalence relation.
- (f) Suppose Q is reflexive and f^*Q is anti-symmetric. Then f is injective.
- (g) Suppose Q is a partial ordering and f is injective. Then f^*Q is a partial ordering.

15. Let A be a non-empty set, and R be a relation in A with graph E.

For any $x \in A$, we define $R[x] = \{y \in A : (x, y) \in E\}$. We define $\Omega = \{R[x] \mid x \in A\}$.

Suppose that R is an equivalence relation in A.

- (a) Prove the statements below:
 - i. For any $x \in A$, $x \in R[x]$.
 - ii. $\emptyset \notin \Omega$.
 - iii. For any $x, y \in A$, if $(x, y) \in E$ then $R[y] \subset R[x]$.
 - iv. For any $x, y \in A$, the statements (\sharp) , (\flat) , (\flat) are logically equivalent:
 - (#) $(x,y) \in E.$ (b) R[x] = R[y]. (b) $R[x] \cap R[y] \neq \emptyset.$

Remark. R[x] is called the **equivalence class** of x under the equivalence relation R.

- (b) Apply part (a), or otherwise, to prove that Ω is a partition of A, in the sense that the statements (N), (U), (D) are true:
 - $(\mathbf{N}) \qquad \emptyset \notin \Omega.$
 - (U) $\{z \in A : z \in S \text{ for some } S \in \Omega\} = A.$
 - (D) For any $S, T \in \Omega$, exactly one of the statements 'S = T', ' $S \cap T = \emptyset$ ' is true.

Remark. We call Ω the **quotient** of A by the equivalence relation R, and usually write Ω as A/R. We refer to the elements of Ω as the equivalence classes under R.

- (c) Let Φ be the subset of $A \times \Omega$ given by $\Phi = \{ (x, S) \mid x \in A \text{ and } S \in \Omega \text{ and } x \in S \}$. Define the relation $\varphi = (A, \Omega, \Phi)$.
 - i. Prove that φ is a surjective function, and that $\varphi(x) = R[x]$ for any $x \in A$. **Remark.** We call φ the **quotient mapping** of the equivalence relation R.
 - ii. Let B be a set and $f: A \longrightarrow B$ be a function. Suppose that for any $x, y \in A$, if $(x, y) \in E$ then f(x) = f(y). Prove that there exists some unique function $g: \Omega \longrightarrow B$ such that $g \circ \varphi = f$.

16. Define the relation $R = (\mathbb{C}, \mathbb{C}, E)$ in \mathbb{C} by $E = \{(\zeta, \eta) \in \mathbb{C}^2 : \operatorname{Re}(\zeta) = \operatorname{Re}(\eta)\}.$

(a) Verify that R is reflexive.

- (b) Verify that R is symmetric.
- (c) Verify that R is an equivalence relation in \mathbb{C} .
- (d) For any ζ ∈ C, denote by [ζ] the equivalence class of ζ under R.
 (Note that by definition, [ζ] = {η ∈ C : (ζ, η) ∈ E}.)
 What are the respective equivalence classes of 1, 0, i under R? Describe these sets in geometric terms in the Argand plane.
- 17. Write $\mathbb{C}^* = \mathbb{C} \setminus \{0\}, \mathbb{R}^* = \mathbb{R} \setminus \{0\}.$

Define the relation $R = (\mathbb{C}^*, \mathbb{C}^*, E)$ in \mathbb{C}^* by $E = \left\{ (\zeta, \eta) \in (\mathbb{C}^*)^2 : \frac{\operatorname{\mathsf{Re}}(\zeta)}{|\zeta|^2} = \frac{\operatorname{\mathsf{Re}}(\eta)}{|\eta|^2} \right\}.$

- (a) Verify that R is an equivalence relation in \mathbb{C}^* .
- (b) For any ζ ∈ C*, denote by [ζ] the equivalence class of ζ under R.
 i. Let a ∈ ℝ*. Verify that [ai] = {ti | t ∈ ℝ*}.
 - ii. Let $\zeta \in \mathbb{C}^*$. Suppose $\operatorname{\mathsf{Re}}(\zeta) \neq 0$. Define $r_{\zeta} = \frac{|\zeta|^2}{2\operatorname{\mathsf{Re}}(\zeta)}$. Verify the statements (†) and (‡):
 - $(\dagger) \quad \ (\zeta, 2r_{\!\varsigma}) \in E.$
 - (‡) Suppose $\eta \in \mathbb{C}^*$. Then $\eta \in [\zeta]$ iff $(\mathsf{Re}(\eta) r_{\zeta})^2 + (\mathsf{Im}(\eta))^2 = (r_{\zeta})^2$.
- 18. Define the relation $T = (\mathbb{C}, \mathbb{C}, G)$ in \mathbb{C} by $G = \{(\zeta, \eta) \in \mathbb{C}^2 : \zeta^4 = \eta^4\}.$
 - (a) Verify that T is an equivalence relation in \mathbb{C} .
 - (b) For any $\zeta \in \mathbb{C}$, denote by $[\zeta]$ the equivalence class of ζ under T. Prove the statements below:
 - i. For any $\zeta, \eta \in \mathbb{C}$, if $\eta \in [\zeta]$ then $(\eta = \zeta \text{ or } \eta = i\zeta \text{ or } \eta = -\zeta \text{ or } \eta = -i\zeta)$.
 - ii. For any $\zeta \in \mathbb{C}$, $[\zeta] = \{\zeta, i\zeta, -\zeta, -i\zeta\}.$
 - (c) Denote by Ω the quotient of \mathbb{C} by T, and define the function $\pi : \mathbb{C} \longrightarrow \Omega$ by $\pi(\zeta) = [\zeta]$ for any $\zeta \in \mathbb{C}$. Let $f : \mathbb{C} \longrightarrow \mathbb{C}$ be a function. Define

$$\varphi = \left\{ (U,\chi) \left| \begin{array}{l} U \in \Omega \text{ and } \chi \in \mathbb{C} \text{ and} \\ \text{there exists } \zeta \in \mathbb{C} \text{ such that } U = [\zeta] \text{ and } \chi = f(\zeta^4). \end{array} \right\}.$$

Note that $\varphi \subset \Omega \times \mathbb{C}$.

Prove the statements below:

- i. φ is a function from Ω to \mathbb{C} .
- ii. $(\varphi \circ \pi)(\zeta) = f(\zeta^4)$ for any $\zeta \in \mathbb{C}$.

iii. Let $\psi : \Omega \longrightarrow \mathbb{C}$ is a function. Suppose $(\psi \circ \pi)(\zeta) = f(\zeta^4)$ for any $\zeta \in \mathbb{C}$. Then $\psi = \varphi$.

19. Let A, B be non-empty sets, and $f: A \longrightarrow B$ be a surjective function.

Define the relation $R_f = (A, A, E_f)$ in A by $E_f = \{(x, y) \mid x, y \in A \text{ and } f(x) = f(y)\}.$

- (a) Verify that R_f is an equivalence relation.
- (b) For any $x \in A$, denote the equivalence class of x under R_f by $[x]_f$. Verify that $[x]_f = f^{-1}(\{f(x)\})$ for any $x \in A$.
- (c) Define $\Omega = \{S \in \mathfrak{P}(A) \mid S = [x]_f \text{ for some } x \in A\}.$ Verify that Ω is a partition of A, in the sense that the statements (N), (U), (D) are true:
 - $(\mathbf{N}) \qquad \emptyset \notin \Omega.$
 - (U) $\{z \in A : z \in S \text{ for some } S \in \Omega\} = A.$
 - (D) For any $S, T \in \Omega$, exactly one of the statements 'S = T', ' $S \cap T = \emptyset$ ' is true.
- (d) Define $G_f = \{(x, S) \mid x \in A \text{ and } S \in \Omega \text{ and } x \in S\}$ and $\pi_f = (A, \Omega, G_f)$. Verify that π_f is a surjective function.
- (e) Let $\varphi : A \longrightarrow C$ be a function. Suppose that for any $x, y \in A$, if f(x) = f(y) then $\varphi(x) = \varphi(y)$. Prove that there exists some unique function $\psi : \Omega \longrightarrow C$ such that $\psi \circ \pi = \varphi$.

20. Recall that whenever $n \in \mathbb{N} \setminus \{0, 1\}$, the relation $R_n = (\mathbb{Z}, \mathbb{Z}, E_n)$ given by $E_n = \{(x, y) \mid x, y \in \mathbb{Z} \text{ and } x \equiv y \pmod{n}\}$ is an equivalence relation in \mathbb{Z} . The quotient of \mathbb{Z} by R_n is the set \mathbb{Z}_n .

For each $x \in \mathbb{Z}$, we denote by $[x]_n$ the equivalence class of x under the equivalence relation R_n in \mathbb{Z} . It is the element of \mathbb{Z}_n given explicitly by $[x]_n = \{x \in \mathbb{Z} : (x, y) \in E_n\} = \{x \in \mathbb{Z} : x \equiv y \pmod{n}\}.$

Below are several 'declarations' through each of which some function is supposed to be defined. Determine whether it makes sense or not. Justify your answer.

- (a) 'Define the function $f: \mathbb{Z}_{10} \longrightarrow \mathbb{Z}$ by $f([k]_{10}) = 10k$ for any $k \in \mathbb{Z}$.'
- (b) 'Define the function $f : \mathbb{Z}_{10} \longrightarrow \mathbb{Z}_{100}$ by $f([k]_{10}) = [k]_{100}$ for any $k \in \mathbb{Z}$.'
- (c) 'Define the function $f: \mathbb{Z}_{100} \longrightarrow \mathbb{Z}_{10}$ by $f([k]_{100}) = [k]_{10}$ for any $k \in \mathbb{Z}$.'
- (d) 'Define the function $f : \mathbb{Z}_{10} \longrightarrow \mathbb{Z}_{100}$ by $f([k]_{10}) = [10k]_{100}$ for any $k \in \mathbb{Z}$.'
- (e) 'Define the function $f : \mathbb{Z}_{10} \longrightarrow \mathbb{Z}_{10}$ by $f([k]_{10}) = [3k]_{10}$ for any $k \in \mathbb{Z}$.'
- (f) 'Define the function $f : \mathbb{Z}_{10} \longrightarrow \mathbb{Z}_{10}$ by $f([3k]_{10}) = [k]_{10}$ for any $k \in \mathbb{Z}$.'
- (g) 'Define the function $f: \mathbb{Z}_{10} \longrightarrow \mathbb{Z}_{10}$ by $f([4k]_{10}) = [3k]_{10}$ for any $k \in \mathbb{Z}$.'
- 21. Let $\mathbb{G} = \{\zeta \in \mathbb{C} : \mathsf{Re}(\zeta) \in \mathbb{Z} \text{ and } \mathsf{Im}(\zeta) \in \mathbb{Z}\}.$ (\mathbb{G} is the set of all Gaussian integers.)

Define the subset E of \mathbb{C}^2 by $E = \{(\zeta, \eta) \mid \zeta, \eta \in \mathbb{C} \text{ and } \zeta - \eta \in \mathbb{G} \}.$

Define $R = (\mathbb{C}, \mathbb{C}, \mathbb{E})$.

For each $\zeta \in \mathbb{C}$, define $[\zeta] = \{\eta \in \mathbb{C} : (\zeta, \eta) \in E\}.$

Let $T = \{ [\zeta] \mid \zeta \in \mathbb{C} \}.$

Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:

- (S1) R is an equivalence relation in \mathbb{C} .
- (S2) For any $\zeta \in \mathbb{C}$, $\zeta \in [\zeta]$.
- (S3) For any $\zeta, \eta \in \mathbb{C}$, the statements (\sharp), (\flat), (\flat) are equivalent: (\sharp) (ζ, η) $\in E$. (\flat) [ζ] = [η]. (\flat) [ζ] \cap [η] $\neq \emptyset$.
- (a) Define the subset Σ of $T^2 \times T$ by

$$\Sigma = \left\{ ((p,q),r) \middle| \begin{array}{l} p,q,r \in T \text{ and (there exist some } \zeta,\eta \in \mathbb{C} \\ \text{ such that } p = [\zeta],q = [\eta] \text{ and } r = [\zeta + \eta]). \end{array} \right\}$$

Define $\alpha = (T^2, T, \Sigma)$. Note that α is a relation from T^2 to T.

Verify that α is a function from T^2 to T.

- (b) Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a surjective function. Consider the statements $(\star), (\star \star)$ below:
 - (*) There exists some surjective function $h: T \longrightarrow T$ such that for any $\zeta \in \mathbb{C}$, $h([\zeta]) = [f(\zeta)]$.
 - (**) For any $\zeta, \eta \in \mathbb{C}$, if $\zeta \eta \in \mathbb{G}$ then $f(\zeta) f(\eta) \in \mathbb{G}$.
 - i. Suppose (\star) holds. Prove that $(\star\star)$ holds.
 - ii. Suppose $(\star\star)$ holds. Prove that (\star) holds.

22. Let $\lambda \in \mathbb{C} \setminus \{0\}$.

Define the subset E of \mathbb{C}^2 by $E = \{(\zeta, \eta) \in \mathbb{C}^2 : \operatorname{Re}(\overline{\lambda}\zeta) = \operatorname{Re}(\overline{\lambda}\eta)\}.$

Define $R = (\mathbb{C}, \mathbb{C}, \mathbb{E})$.

For each $\zeta \in \mathbb{C}$, define $[\zeta] = \{\eta \in \mathbb{C} : (\zeta, \eta) \in E\}.$

Let $L = \{ [\zeta] \mid \zeta \in \mathbb{C} \}.$

Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:

- (S1) R is an equivalence relation in \mathbb{C} .
- (S2) For any $\zeta \in \mathbb{C}$, $\zeta \in [\zeta]$.
- (S3) For any $\zeta, \eta \in \mathbb{C}$, the statements (\sharp) , (\flat) , (\flat) are equivalent: $(\sharp) \quad (\zeta, \eta) \in E.$ $(\natural) \quad [\zeta] = [\eta].$ $(\flat) \quad [\zeta] \cap [\eta] \neq \emptyset.$

(a) Define the subset Σ of $L^2 \times L$ by

$$\Sigma = \left\{ ((p,q),r) \middle| \begin{array}{l} p,q,r \in L \text{ and (there exist some } \zeta, \eta \in \mathbb{C} \\ \text{ such that } p = [\zeta], q = [\eta] \text{ and } r = [\zeta + \eta]). \end{array} \right\}.$$

Define $\alpha = (L^2, L, \Sigma)$. Note that α is a relation from L^2 to L. Verify that α is a function from L^2 to L.

(b) Now also suppose $\mathsf{Re}(\lambda) \neq 0$. Define the function $f : \mathbb{C} \longrightarrow \mathbb{R}$ by

$$f(\zeta) = \frac{\mathsf{Re}(\overline{\lambda}\zeta)}{\mathsf{Re}(\lambda)} \text{ for any } \zeta \in \mathbb{C}.$$

Prove the statement (\star) :

- (*) There exists some bijective function $h: L \longrightarrow \mathbb{R}$ such that (for any $\zeta \in \mathbb{C}$, $h([\zeta]) = f(\zeta)$) and (for any $\sigma, \tau \in \mathbb{C}$, $h(\alpha([\sigma], [\tau])) = f(\sigma) + f(\tau)$).
- 23. Write $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}.$

Define the subset F of $(\mathbb{Z} \times \mathbb{Z}^*)^2$ by

$$F = \{ ((x, y), (x', y')) \mid x, x' \in \mathbb{Z} \text{ and } y, y' \in \mathbb{Z}^* \text{ and } xy' = x'y \}.$$

Define $Q = (\mathbb{Z} \times \mathbb{Z}^*, \mathbb{Z} \times \mathbb{Z}^*, F)$

For any $x \in \mathbb{Z}, y \in \mathbb{Z}^*$, define $[x, y] = \{(s, t) \mid s \in \mathbb{Z} \text{ and } t \in \mathbb{Z}^* \text{ and } ((x, y), (s, t)) \in F\}$. Let $\Phi = \{[x, y] \mid x \in \mathbb{Z} \text{ and } y \in \mathbb{Z}^*\}$.

Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:

- (S1) Q is an equivalence relation in $\mathbb{Z} \times \mathbb{Z}^*$.
- (S2) For any $x \in \mathbb{Z}$, for any $y \in \mathbb{Z}^*$, $(x, y) \in [(x, y)]$.
- (S3) For any $x, x' \in \mathbb{Z}$, for any $y, y' \in \mathbb{Z}^*$, the statements (\sharp) , (\flat) , (\flat) are equivalent: $(\sharp) \quad ((x, y), (x', y')) \in F.$ $(\flat) \quad [x, y] = [x', y'].$ $(\flat) \quad [x, y] \cap [x', y'] \neq \emptyset.$
- (a) Define the subset G of $\Phi^2 \times \Phi$ by

$$G = \left\{ ((u,v),w) \middle| \begin{array}{l} \text{There exist some } x, x' \in \mathbb{Z}, y, y' \in \mathbb{Z}^* \\ \text{such that } u = [x,y] \text{ and } v = [x',y'] \text{ and } w = [xy' + yx', yy']. \end{array} \right\}.$$

Define $\alpha = (\Phi^2, \Phi, G)$. Note that α is a relation from G^2 to G. Verify that α is a function.

(b) For any $u, v \in \Phi$, we write $\alpha(u, v)$ as $u \oplus v$.

Verify the statements below:

- i. For any $u, v \in \Phi$, $u \oplus v = v \oplus u$.
- ii. For any $u, v, w \in \Phi$, $(u \oplus v) \oplus w = u \oplus (v \oplus w)$.
- iii. There exists some unique $e \in \Phi$ such that for any $u \in \Phi$, $u \oplus e = u$ and $e \oplus u = u$.
- iv. For any $u \in \Phi$, there exists some unique $v \in \Phi$ such that $u \oplus v = e$ and $v \oplus u = e$. (Here e is the unique element of Φ which satisfies $u \oplus e = u = e \oplus u$ for any $u \in \Phi$.)