
MATH1050 Examples: Relations.

1. Define the relation T = (R,R, G) in R by G = {(x, y) ∈ R2 : There exists some n ∈ Z such that y = 2nx}.

(a) Verify that T is reflexive.

(b) Verify that T is transitive.

(c) Verify that T is an equivalence relation in R.

2. Let p be a positive real number. Define the relation R = (C,C, E) in C by

E =
{
(ζ, η) ∈ C2 : There exists some n ∈ Z such that η = ζ · (cos(np) + i sin(np)).

}
(a) Verify that R is reflexive.

(b) Verify that R is transitive.

(c) Is R an equivalence relation in C? Justify your answer.

3. Write C∗ = C\{0}. Define the relation R = (C∗,C∗, G) in C∗ by

G =
{
(ζ, η) ∈ (C∗)2 : There exists some n ∈ Z such that ζ = η · 2n(cos(n) + i sin(n)).

}
.

(a) Verify that R is reflexive.

(b) Verify that R is transitive.

(c) Is R an equivalence relation in C∗? Justify your answer.

4. Define the relation T = (R,R, G) in R by
G = {(x, y) | x ∈ R and y ∈ R and (there exists some m,n ∈ Q such that y = 3m5nx)}.

(a) Verify that T is reflexive.

(b) Verify that T is transitive.

(c) Verify that T is an equivalence relation in R.

5. Let A be a set, G = {(S, T ) | S ∈ P(A) and T ∈ P(A) and S ⊂ T} and R = (P(A),P(A), G).

(a) Verify that R is a partial ordering.

(b) Suppose A has at least two distinct elements. Verify that R is not a total ordering.

6. (a) Let A be the set of all real-valued continuous functions on [0, 1]. Define the relation S = (A,A,G) in A by

G =

{
(f, g) ∈ A2 :

∫ x

0

uf(u)du ≤
∫ x

0

ug(u)du for any x ∈ [0, 1]

}
.

Is S a partial ordering in A? Justify your answer.
(b) Let B be the set of all real-valued piecewise-continuous functions on [0, 1]. Define the relation T = (B,B,H) in

B by

H =

{
(f, g) ∈ B2 :

∫ x

0

uf(u)du ≤
∫ x

0

ug(u)du for any x ∈ [0, 1]

}
.

Is T a partial ordering in B? Justify your answer.

7. Define the relation S = (N2,N2, P ) in N2 by P =

{
(u, v)

∣∣∣∣∣ There exist m,n, p, q ∈ N such that
u = (m,n), v = (p, q) and 2n+ 1

2m
≤ 2q + 1

2p

}
.

Here ≤ is the usual ordering in R.

(a) Verify that S is a partial ordering in N2.

(b) Is S a total ordering in N2? Why?

8. Define the relation R = (C,C, P ) by P =

{
(ζ, η)

∣∣∣∣ ζ, η ∈ C and
(Re(ζ) < Re(η) or (Re(ζ) = Re(η) and Im(ζ) ≤ Im(η)))

}
.
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(a) Let ζ, η ∈ C.

i. Verify that (ζ, η) ∈ P iff (Re(ζ) ≤ Re(η) and (Re(ζ) < Re(η) or Im(ζ) ≤ Im(η))).
ii. Verify that (ζ, η) /∈ P iff (Re(η) < Re(ζ) or (Re(η) ≤ Re(ζ) and Im(η) < Im(ζ))).

(b) Verify that R is a total ordering in C.

Remark. Such a total ordering in C is known as a lexicographical ordering. Think of each complex number as a
word with two ‘letters’, the first ‘letter’ being its real part and the second ‘letter’ being its imaginary part respectively.
Now how do you arrange such ‘two-letter words’ in a dictionary?

9. Denote by Σ the set of all infinite sequences in R. (Recall that each infinite sequence in R is a function from N to R.)

Let k ∈ N. Define the relation Rk = (Σ,Σ, E) by

E =

{
(α, β)

∣∣∣∣ α, β ∈ Σ and there exist some N ∈ N, C ≥ 0

such that (|α(x)− β(x)| ≤ C/xk for any x ≥ N).

}
(a) Verify that Rk is reflexive and symmetric.

(b) Verify that Rk is an equivalence relation in Σ.

10. (a) Let A = {0, 1, 2}, G = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)}, and R = (A,A,G). (Here 0, 1, 2 are pairwise distinct
objects.)

i. Verify that R is not symmetric.
ii. Verify that R is not transitive.
iii. Verify that R is reflexive.

(b) Let B = {0, 1}, H = {(0, 0), (0, 1), (1, 0)}, and S = (B,B,H). (Here 0, 1 are distinct objects.)
i. Verify that S is not reflexive.
ii. Verify that S is not transitive.
iii. Verify that S is symmetric.

(c) Let C = {0, 1, 2}, J = {(0, 1), (1, 2), (0, 2)}, and T = (C,C, J). (Here 0, 1, 2 are pairwise distinct objects.)
i. Verify that T is not reflexive.
ii. Verify that T is not symmetric.
iii. Verify that T is transitive.

Remark. Can you construct a relation in a non-empty set which is reflexive and symmetric but not transitive? Can
you construct a relation in a non-empty set which is reflexive and transitive but not symmetric? Can you construct
a relation in a non-empty set which is symmetric and transitive but not reflexive?

11. Dis-prove each of the statements below by giving an appropriate counter-example.

(a) Let A be a non-empty set, and R be a relation in A. Suppose R is reflexive and symmetric. Then R is transitive.

(b) Let A be a non-empty set, and R be a relation in A. Suppose R is reflexive and transitive. Then R is symmetric.

(c) Let A be a non-empty set, and R be a relation in A. Suppose R is symmetric and transitive. Then R is reflexive.

12. (a) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is symmetric and transitive.
Prove that the statements below are logically equivalent:
(♯) For any x ∈ A, there exists some y ∈ A such that (x, y) ∈ G.
(♭) R is reflexive.

(b) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is reflexive.
Prove that the statements below are logically equivalent:
(♯) For any x, y, z ∈ A, if (x, y) ∈ G and (y, z) ∈ G then (z, x) ∈ G.
(♭) R is symmetric and transitive.

(c) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is reflexive.
Prove that the statements below are logically equivalent:
(♯) For any x, y, z ∈ A, if (x, y) ∈ G and (x, z) ∈ G then (y, z) ∈ G.
(♭) R is symmetric and transitive.
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13. Let A be a set, F be a subset of A2, and f = (A,A, F ). Suppose f is a function from A to A. (Also think of f as a
relation in A.) Prove the statements below:

(a) If f is reflexive as a relation in A then f = idA.

(b) If f is transitive as a relation in A then f ◦ f = f as functions.

(c) If f is transitive as a relation in A and f is injective as a function then f = idA.

(d) If f is both symmetric and transitive as a relation in A then f = idA.

14. We introduce the definition below:

• Let A,B be sets, f : A −→ B be a function, and Q be a relation in B with graph H.
Define the subset f∗H of A2 by f∗H =

{
(x,w) | x ∈ A and w ∈ A and (f(x), f(w)) ∈ H

}
.

The relation (A,A, f∗H) is called pull-back relation of Q by f . It is denoted by f∗Q in A.

Let A,B be sets, f : A −→ B be a function, and Q be a relation in B with graph H.
Prove the statements below:

(a) Suppose Q is reflexive. Then f∗Q is reflexive.

(b) Suppose Q is symmetric. Then f∗Q is symmetric.

(c) Suppose Q is transitive. Then f∗Q is transitive.

(d) Suppose Q is an equivalence relation. Then f∗Q is an equivalence relation.

(e) Suppose f∗Q is an equivalence relation and f is surjective. Then Q is an equivalence relation.

(f) Suppose Q is reflexive and f∗Q is anti-symmetric. Then f is injective.

(g) Suppose Q is a partial ordering and f is injective. Then f∗Q is a partial ordering.

15. Let A be a non-empty set, and R be a relation in A with graph E.

For any x ∈ A, we define R[x] = {y ∈ A : (x, y) ∈ E}. We define Ω =
{
R[x]

∣∣ x ∈ A
}

.

Suppose that R is an equivalence relation in A.

(a) Prove the statements below:

i. For any x ∈ A, x ∈ R[x].
ii. ∅ /∈ Ω.
iii. For any x, y ∈ A, if (x, y) ∈ E then R[y] ⊂ R[x].
iv. For any x, y ∈ A, the statements (♯), (♮), (♭) are logically equivalent:

(♯) (x, y) ∈ E. (♮) R[x] = R[y]. (♭) R[x] ∩R[y] ̸= ∅.

Remark. R[x] is called the equivalence class of x under the equivalence relation R.

(b) Apply part (a), or otherwise, to prove that Ω is a partition of A, in the sense that the statements (N), (U), (D)
are true:
(N) ∅ /∈ Ω.
(U) {z ∈ A : z ∈ S for some S ∈ Ω} = A.
(D) For any S, T ∈ Ω, exactly one of the statements ‘S = T ’, ‘S ∩ T = ∅’ is true.

Remark. We call Ω the quotient of A by the equivalence relation R, and usually write Ω as A/R. We refer
to the elements of Ω as the equivalence classes under R.

(c) Let Φ be the subset of A × Ω given by Φ =
{

(x, S)
∣∣ x ∈ A and S ∈ Ω and x ∈ S

}
. Define the relation

φ = (A,Ω,Φ).

i. Prove that φ is a surjective function, and that φ(x) = R[x] for any x ∈ A.
Remark. We call φ the quotient mapping of the equivalence relation R.

ii. Let B be a set and f : A −→ B be a function. Suppose that for any x, y ∈ A, if (x, y) ∈ E then f(x) = f(y).
Prove that there exists some unique function g : Ω −→ B such that g ◦ φ = f .

16. Define the relation R = (C,C, E) in C by E = {(ζ, η) ∈ C2 : Re(ζ) = Re(η)}.

(a) Verify that R is reflexive.
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(b) Verify that R is symmetric.
(c) Verify that R is an equivalence relation in C.
(d) For any ζ ∈ C, denote by [ζ] the equivalence class of ζ under R.

(Note that by definition, [ζ] = {η ∈ C : (ζ, η) ∈ E}.)
What are the respective equivalence classes of 1, 0, i under R? Describe these sets in geometric terms in the
Argand plane.

17. Write C∗ = C\{0}, R∗ = R\{0}.

Define the relation R = (C∗,C∗, E) in C∗ by E =

{
(ζ, η) ∈ (C∗)2 :

Re(ζ)
|ζ|2

=
Re(η)
|η|2

}
.

(a) Verify that R is an equivalence relation in C∗.
(b) For any ζ ∈ C∗, denote by [ζ] the equivalence class of ζ under R.

i. Let a ∈ R∗. Verify that [ai] = {ti | t ∈ R∗}.

ii. Let ζ ∈ C∗. Suppose Re(ζ) ̸= 0. Define r
ζ
=

|ζ|2

2Re(ζ) . Verify the statements (†) and (‡):

(†) (ζ, 2r
ζ
) ∈ E.

(‡) Suppose η ∈ C∗. Then η ∈ [ζ] iff (Re(η)− r
ζ
)2 + (Im(η))2 = (r

ζ
)2.

18. Define the relation T = (C,C, G) in C by G =
{
(ζ, η) ∈ C2 : ζ4 = η4

}
.

(a) Verify that T is an equivalence relation in C.
(b) For any ζ ∈ C, denote by [ζ] the equivalence class of ζ under T .

Prove the statements below:
i. For any ζ, η ∈ C, if η ∈ [ζ] then (η = ζ or η = iζ or η = −ζ or η = −iζ).
ii. For any ζ ∈ C, [ζ] = {ζ, iζ,−ζ,−iζ}.

(c) Denote by Ω the quotient of C by T , and define the function π : C −→ Ω by π(ζ) = [ζ] for any ζ ∈ C.
Let f : C −→ C be a function. Define

φ =

{
(U, χ)

∣∣∣∣ U ∈ Ω and χ ∈ C and
there exists ζ ∈ C such that U = [ζ] and χ = f(ζ4).

}
.

Note that φ ⊂ Ω× C.
Prove the statements below:

i. φ is a function from Ω to C.
ii. (φ ◦ π)(ζ) = f(ζ4) for any ζ ∈ C.
iii. Let ψ : Ω −→ C is a function. Suppose (ψ ◦ π)(ζ) = f(ζ4) for any ζ ∈ C. Then ψ = φ.

19. Let A,B be non-empty sets, and f : A −→ B be a surjective function.
Define the relation Rf = (A,A,Ef ) in A by Ef = {(x, y) | x, y ∈ A and f(x) = f(y)}.

(a) Verify that Rf is an equivalence relation.

(b) For any x ∈ A, denote the equivalence class of x under Rf by [x]f .
Verify that [x]f = f−1({f(x)}) for any x ∈ A.

(c) Define Ω = {S ∈ P(A) | S = [x]f for some x ∈ A}.
Verify that Ω is a partition of A, in the sense that the statements (N), (U), (D) are true:
(N) ∅ /∈ Ω.
(U) {z ∈ A : z ∈ S for some S ∈ Ω} = A.
(D) For any S, T ∈ Ω, exactly one of the statements ‘S = T ’, ‘S ∩ T = ∅’ is true.

(d) Define Gf = {(x, S) | x ∈ A and S ∈ Ω and x ∈ S} and πf = (A,Ω, Gf ).
Verify that πf is a surjective function.

(e) Let φ : A −→ C be a function. Suppose that for any x, y ∈ A, if f(x) = f(y) then φ(x) = φ(y). Prove that
there exists some unique function ψ : Ω −→ C such that ψ ◦ π = φ.
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20. Recall that whenever n ∈ N\{0, 1}, the relation Rn = (Z,Z, En) given by En = {(x, y) | x, y ∈ Z and x ≡ y(mod n)}
is an equivalence relation in Z. The quotient of Z by Rn is the set Zn.
For each x ∈ Z, we denote by [x]n the equivalence class of x under the equivalence relation Rn in Z. It is the element
of Zn given explicitly by [x]n = {x ∈ Z : (x, y) ∈ En} = {x ∈ Z : x ≡ y(mod n)}.
Below are several ‘declarations’ through each of which some function is supposed to be defined. Determine whether
it makes sense or not. Justify your answer.

(a) ‘Define the function f : Z10 −→ Z by f([k]10) = 10k for any k ∈ Z.’

(b) ‘Define the function f : Z10 −→ Z100 by f([k]10) = [k]100 for any k ∈ Z.’

(c) ‘Define the function f : Z100 −→ Z10 by f([k]100) = [k]10 for any k ∈ Z.’

(d) ‘Define the function f : Z10 −→ Z100 by f([k]10) = [10k]100 for any k ∈ Z.’

(e) ‘Define the function f : Z10 −→ Z10 by f([k]10) = [3k]10 for any k ∈ Z.’

(f) ‘Define the function f : Z10 −→ Z10 by f([3k]10) = [k]10 for any k ∈ Z.’

(g) ‘Define the function f : Z10 −→ Z10 by f([4k]10) = [3k]10 for any k ∈ Z.’

21. Let G = {ζ ∈ C : Re(ζ) ∈ Z and Im(ζ) ∈ Z}. (G is the set of all Gaussian integers.)

Define the subset E of C2 by E = {(ζ, η) | ζ, η ∈ C and ζ − η ∈ G}.

Define R = (C,C, E).

For each ζ ∈ C, define [ζ] = {η ∈ C : (ζ, η) ∈ E}.

Let T = {[ζ] | ζ ∈ C}.

Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:

(S1) R is an equivalence relation in C.
(S2) For any ζ ∈ C, ζ ∈ [ζ].
(S3) For any ζ, η ∈ C, the statements (♯), (♮), (♭) are equivalent:

(♯) (ζ, η) ∈ E. (♮) [ζ] = [η]. (♭) [ζ] ∩ [η] ̸= ∅.

(a) Define the subset Σ of T 2 × T by

Σ =

{
((p, q), r)

∣∣∣∣ p, q, r ∈ T and (there exist some ζ, η ∈ C

such that p = [ζ], q = [η] and r = [ζ + η]).

}
.

Define α = (T 2, T,Σ). Note that α is a relation from T 2 to T .
Verify that α is a function from T 2 to T .

(b) Let f : C −→ C be a surjective function. Consider the statements (⋆), (⋆⋆) below:

(⋆) There exists some surjective function h : T −→ T such that for any ζ ∈ C, h([ζ]) = [f(ζ)].
(⋆⋆) For any ζ, η ∈ C, if ζ − η ∈ G then f(ζ)− f(η) ∈ G.

i. Suppose (⋆) holds. Prove that (⋆⋆) holds.
ii. Suppose (⋆⋆) holds. Prove that (⋆) holds.

22. Let λ ∈ C\{0}.

Define the subset E of C2 by E = {(ζ, η) ∈ C2 : Re(λζ) = Re(λη)}.

Define R = (C,C, E).

For each ζ ∈ C, define [ζ] = {η ∈ C : (ζ, η) ∈ E}.

Let L = {[ζ] | ζ ∈ C}.

Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:

(S1) R is an equivalence relation in C.
(S2) For any ζ ∈ C, ζ ∈ [ζ].
(S3) For any ζ, η ∈ C, the statements (♯), (♮), (♭) are equivalent:

(♯) (ζ, η) ∈ E. (♮) [ζ] = [η]. (♭) [ζ] ∩ [η] ̸= ∅.
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(a) Define the subset Σ of L2 × L by

Σ =

{
((p, q), r)

∣∣∣∣ p, q, r ∈ L and (there exist some ζ, η ∈ C

such that p = [ζ], q = [η] and r = [ζ + η]).

}
.

Define α = (L2, L,Σ). Note that α is a relation from L2 to L.
Verify that α is a function from L2 to L.

(b) Now also suppose Re(λ) ̸= 0. Define the function f : C −→ R by

f(ζ) =
Re(λζ)
Re(λ) for any ζ ∈ C.

Prove the statement (⋆):

(⋆) There exists some bijective function h : L −→ R such that (for any ζ ∈ C, h([ζ]) = f(ζ)) and (for any
σ, τ ∈ C, h(α([σ], [τ ])) = f(σ) + f(τ)).

23. Write Z∗ = Z\{0}.

Define the subset F of (Z×Z∗)2 by

F =
{
((x, y), (x′, y′))

∣∣ x, x′ ∈ Z and y, y′ ∈ Z∗ and xy′ = x′y
}
.

Define Q = (Z×Z∗,Z×Z∗, F )

For any x ∈ Z, y ∈ Z∗, define [x, y] = {(s, t) | s ∈ Z and t ∈ Z∗ and ((x, y), (s, t)) ∈ F}.

Let Φ = {[x, y] | x ∈ Z and y ∈ Z∗}.

Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:

(S1) Q is an equivalence relation in Z×Z∗.
(S2) For any x ∈ Z, for any y ∈ Z∗, (x, y) ∈ [(x, y)].
(S3) For any x, x′ ∈ Z, for any y, y′ ∈ Z∗, the statements (♯), (♮), (♭) are equivalent:

(♯) ((x, y), (x′, y′)) ∈ F . (♮) [x, y] = [x′, y′]. (♭) [x, y] ∩ [x′, y′] ̸= ∅.

(a) Define the subset G of Φ2 × Φ by

G =

{
((u, v), w)

∣∣∣∣ There exist some x, x′ ∈ Z, y, y′ ∈ Z∗

such that u = [x, y] and v = [x′, y′] and w = [xy′ + yx′, yy′].

}
.

Define α = (Φ2,Φ, G). Note that α is a relation from G2 to G.
Verify that α is a function.

(b) For any u, v ∈ Φ, we write α(u, v) as u⊕ v.
Verify the statements below:

i. For any u, v ∈ Φ, u⊕ v = v ⊕ u.
ii. For any u, v, w ∈ Φ, (u⊕ v)⊕ w = u⊕ (v ⊕ w).
iii. There exists some unique e ∈ Φ such that for any u ∈ Φ, u⊕ e = u and e⊕ u = u.
iv. For any u ∈ Φ, there exists some unique v ∈ Φ such that u ⊕ v = e and v ⊕ u = e. (Here e is the unique

element of Φ which satisfies u⊕ e = u = e⊕ u for any u ∈ Φ.)
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