0. This handout is a continuation of the Handout Partial orderings and total orderings.

1. Definition.

Let A be a set, and 1" be a partial ordering in A with graph G. Write u = v exactly when
(u,v) € G.
Let B be a subset of A.

greatest

Let A\ € B. Wesay A is a { lenst

r =<\
x= M|

Remark. A subset of A has at most one greatest/least element with respect to T'. Hence

} element of B with respect tol' if, for any x € B,

it makes sense to refer to such an element of A as ‘the’ greatest /least element with respect
to T', if it exists.

Here in this Handout we focus on the question of existence of greatest/least elements for
sets with respect to total orderings.



. Example (A’). (Usual ordering for real numbers.)

The notion of greatest/least element for subsets of R with respect to the usual ordering for
real numbers reduces to that for ‘greatest/least element for subsets of IR, introduced in the
Handout Greatest/least element, upper/lower bound.

(a) According to the Well-ordering Principle for Integers, for any subset B of N, if B is
non-empty, then B has a least element (with respect to the usual ordering for natural
numbers).

A non-empty subset of N does not necessarily have any greatest element.

(b) Let a, b be real numbers. Supposed a < b.

least element | greatest element least element | greatest element
(a,b) nil nil (a, +00) nil nil
[a,b) a nil la, +00) a nil
(a, 0] nil b (—00,b) nil nil
a, b] a b (—o0, b] nil b




3. Definition.
Let A be a set, and T' be a partial ordering in A. We say T' is a well-order relation in
A if the statement (\) holds:

(A)  For any subset B of A, if B is non-empty then B has a least element with respect
to 1.

We also say that A is well-ordered by T, and that the poset (A, T) is well-ordered.

Simple examples and non-examples of well-ordered sets.

(a) N is well-ordered by the usual ordering for natural numbers, according to Example (A’).
(This is just a re-formulation of the statement of the Well-ordering Principle for Integers.)

This is the primordial example of well-ordered sets.

(b) Every non-empty subset of Z which is bounded below in Z is well-ordered by the usual
ordering for integers.

Z is not well-ordered by the usual ordering for integers. (Why?)
(¢) Q is not well-ordered by the usual ordering for rational numbers. (Why?)
(d) IR is not well-ordered by the usual ordering for real numbers. (Why?)



4. Lemma (8).
Let A be a set, and T' is a partial ordering in A.
Suppose A is well-ordered by T'. Then A is totally ordered by T

Proof of Lemma (8).

Let A be a set, and T' be a partial ordering in A with graph G. Suppose A is well-ordered
by T'.

Pick any =,y € A. Define B = {x,y}.

Then B is a non-empty subset of A.

By assumption, A is well-ordered by T'.

Then B has a least element with respect to 1", say, x.

Therefore, by definition, (z,y) € G. Therefore (z,y) € G or (y,z) € G.

It follows that A is totally ordered by 7.



Non-examples on well-order relations.

According to Lemma (8), there is no chance for a partial ordering which is not a total
ordering to be a well-order relation.

« Refer to Example (B).
The partial ordering 7}, in N defined by divisibility is not a well-order relation, because
it is not a total ordering in N.

« Refer to Example (C).
When F is a set which has at least two elements, (P(E), B(E), GE ) 1S D0t & well-order
relation, because it is not a total ordering in P (F).

Reminder. The converse of Lemma (8) is false: a total ordering in a set is not necessarily
a well-order relation in that set.

(For instance, the usual ordering for real numbers is a total ordering in R but it is not a
well-order relation in R.)



5. Lemma (9).
Let A be a set. Suppose T' is a well-order relation in A with graph G.
Then, for any subset B of A, (B, B, G N B?) is a well-order relation in B.

6. Theorem (10).
Let A be a non-empty set. Suppose T is a well-order relation in A with graph G. Write
r =<y iff (x,y) € G.
Then the statements below hold:
(a) There exists some unique A € A such that for any x € A\{\}, A < x.

(b) For any x € A, if x is not a greatest element of A with respect to T' then there exists
some unique y € A such that x < y and (for any z € A, if x < z <y then z = x or

z=y).

Remark. Theorem (10) brings out what is special about well-ordered posets.

. Statement (a) says that some unique element of A, namely the least element of A with
respect to 1", will be the ‘starting element’ of A, in the sense that no element of A will
precede it with respect to T

. Statement (b) says that it makes sense to talk about the (unique) ‘next element’ of A for
each element of A, in the sense that no third element of A will be between these two.



This allows us to visualize the ‘ordering’ of all the elements of A, with respect to T, in the
‘chain of inequalities’
)\ j )\/ j )\/l j )\/// j ..
in which
A is the least element of A with respect to T,
N is the least element of A\{\} with respect to T,
A" is the least element of A\{\, \'} with respect to T,
N is the least element of A\{\, X', A"} with respect to T, et cetera.
An illustration is how we may visualize the ‘ordering’ for all natural numbers with respect
to its usual ordering;:
0<1<2<3<4<--
This cannot be done for the usual ordering for integers because Z has no least element.

This cannot be done for the usual ordering for rational numbers because the notion of ‘next
rational’ number does not make sense: between any two distinct rational numbers there is
definitely a third rational number.

But we may ask:

« Is it possible to equip these sets with some other partial orderings which are well-
order relations?



7. Example (D’). (Lexicographical ordering in N° as a well-order relation in
NZ.)
The lexicographical ordering in N? is a well-order relation in N* because the statement ()
holds:

(1) For any subset B of N*, if B is non-empty, then B has a least element with respect to
the lexicographical ordering in N*.

Below is the idea for the argument for the statement (7). (The detail is left as an exercise.)
Suppose B is a non-empty subset of N,
Then we may pick some element of B, say, the ordered pair of natural numbers, say, (u,v).

The lexicographical ordering in N* allows us to visualize the ‘ordering’ for all the elements
of N*, up to and including (u, v), through such a ‘chain of inequalities’ below:

(07 0) Slex (07 1) Slex (07 2) Slex e Slex (17 0) Slex (17 1) Slex e Slex (27 0) Slex e Slex (U, 0) SleX (U, 1) Slex U Slex (Ua U)



So elements of B are listed in at least one of the rows (f), (#1), (f2), ..., (fu), each with

‘constant’ first coordinate, in the table below:

(fo) : (0,0) (0,1) (0,2) (0,3) -+ (0,u—1) (0,v) (O,v+1) ---
() (1,0) (1,1) (1,2) (1,3) -+ (Lv—=1) (L,v) (Lo+1) -
() (2,0) (2,1) (2,2) (2,3) -+ (2,v—=1) (2,v) (Zv+1) ---

B+ (,0) (1) (2) (03 - (w1 (@v) (wv+1) -

L omelomek o) B

The Well-ordering Principle for Integers guarantees that there will be a row in this table
with the ‘smallest value of label’, say, s, so that some element of B, say, (s, w) is listed in

the row ().

iﬁ&% (o) : (0,0) (0,1) (0,2) (0,3) --- (0,w—1) (0,w) (O,w+1) ---
y Bt ) (1) (L,0) (L) (1,2) (1L3) -+ (Lw=1) (Lw) Lw+1) -
demo ) (1) (20) (1) (2,2) 2,3) =+ 2w=1) Qw) Gutl) -

ew (5,0 (5.1 (52) (58) (0= ) Gu)(sw+D)

Lo demek 4 B,



Then the Well-ordering Principle for Integers further guarantees that amongst
(5,0),(s,1),(5,2), -, (s,w— 1), (s,w),
there will be an element of B with the ‘smallest second coordinate’, say, ¢.

<hoe [ (o) (0,0) (0,1) (0,2) (0,3) -+~ (0,6 —1) (0,8) (0,£+1) -
Pt | ()0 (10 (L1) (12) (1) - (Li=1) (1) (Le+D) -
{L\zﬂf\;?) (ﬁQ)(2 O) (271) (272) (273) (Zt_l)(7)(2t+1)
3, G/, - . : . .

e 060 6. (52) (3 @;@(s,m)

%gmmw s A . domek K B
(s,t) will be the least element of B with respect to the lexicographical ordering in NZ.

Example (D7) is an illustration of the idea in Theorem (11).

8. Theorem (11).

Let A, B be sets. Suppose R is a well-order relation in A, and S is a well-order relation in
B.

Then the lexicographical ordering in A X B induced by R and S is a well-order relation in
AXB.



9. Example (E). (Well-order relation in Z arising from the usual ordering for
natural numbers.)

Recall that that Z is not well-ordered by the usual ordering for integers.

How, we may define a well-order relation in Z with the help of the usual ordering for natural
numbers.

2T if x is non-negative
Define the function f: Z — N by f(z) = 5
— 2z — 1 if x is negative
f is an injective function from Z to N.
Let G={(z,y) |z €Zandy € Z and f(z) < f(y)},and S = (Z,Z,G).
S is a well-order relation in Z.
So we visualize the ‘ordering’ for all integers with respect to the well-order relation S, through
the ‘chain of inequalities’ below:
0=, 1=, 12, -2=.2=, 3=, 3=, n—-1=x,—n=,n=,--
This is simply a direct translation, via f and S, of the chain of inequalities

0<1<2<83<84<8H5 <68 <2n—2<2n—-1<2n< .

Note that 0 <, —1 < 1 whereas —1 < 0 < 1. Hence S is certainly distinct from the usual
ordering for integers.
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10. Example (F). (Well-order relation in N* which is not the same as the lexi-
cographical ordering.)

Recall that the lexicographical ordering in N? is a well-order relation in N*. We now intro-
duce, via an injective function from N? to N, another well-order relation in N* which is not
the lexicographical ordering in N2.

Define the function f : N* — N by f(z,y) = 2*3Y for any x,y € N.

f is an injective function from N* to N. (You need Euclid’s Lemma to justify this claim.)
Let G = {((s,1), (u,v)) | s,t,u,v € N and f(s,t) < f(u,v)}, and S = (N*, N* G).

S is a well-order relation in N.

So we visualize the ‘ordering’ for all the elements of N? with respect to the well-order relation
S, through the ‘chain of inequalities’ below:

(070) js (170) j5 (07 1) js (270) js (17 1) js (370) js (072) js (27 1) js (47 0) js (1?2> js (37 1) js (073) js
This is simply a direct translation, via f and .S, of the chain of inequalities

1<2<3<4<6<88<C9<12<L816818 824827 <,
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Note that
(1,0) <4 (0,1) <4 (2,0)
whereas

(1,0) <. (2,0) <, (0,1).

Hence S is certainly distinct from the lexicographical ordering for N.

Remark. Replacing f by another injective function from N* to N, we will obtain another
well-order relation in N* from such a construction.

(For instance, what do you obtain with the injective function g : N> — N given by

glx,y) = 2°5Y for any x,y € N? Or how about the injective function h : N> — N given
by h(z,y) = 3*5Y for any x,y € N7)

Example (E), Example (F) are illustrations of the idea in Theorem (12), which is concerned
with general partial orderings.



11. Theorem (12).
Let A, B be sets, and f : A — B be an injective function.

Suppose T' is a partial ordering in B with graph H. Writeuw < v exactly when (u,v) € H.
Define G = {(x,y) | z,y € Aand f(z) =, f(y)}, and S = (A, A, G).

Then S is a partial ordering in A with graph G.

If T is a total ordering in B then S is a total ordering in A.

If T is a well-order relation in B then S is a well-order relation in A.

Remark on terminology and notation.  In the context of Theorem (12), the
partial ordering S defined by the injective function f and the partial ordering 7' is called
the partial ordering in A defined by the pullback of T' by f. It is denoted by
f*T', and its graph is denoted by f*H.



12. Example (G). (Well-order relation in Q arising from the usual ordering for
natural numbers.)

Recall that that Q is not well-ordered by the usual ordering for integers.

However, we may define a well-order relation in Q with the help of the usual ordering for
natural numbers.

(a) Refer to Example (E). We have constructed a well-order relation in Z, namely, S, (with
the help of the usual ordering for natural numbers).

(b) By Theorem (11), Z? is well-ordered by the lexicographical ordering in Z* induced by S

and S.

We denote this well-order relation in Z* by T'.

S R ZY b Z p
Q’_ég od ‘SS ‘ ég"z :52 __S"Z _“Sg :‘S —

T 3w
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(c) We take the statement () for granted:

() For any r € Q\{0}, there exist some unique p,, q, € Z such that ged(p,, q,) = 1 and

qr>0and’r:&.

dr
(Justify the statement (f) as an exercise.)

Define the function f: Q@ — Z2 by

) ) i e Q\{0}
fm{(o,m it r=0.

f is injective.

(d) According to Theorem (12), the partial ordering f*T" in @ defined by the pullback of T
by f is a well-order relation in @.
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13. Well-ordering Principle, as a fundamental assumption in mathematics.
Example (E) and Example (G) tell us:
e Despite the fact that Z, Q themselves are not well-ordered by the usual ordering for real
numbers, it is still possible to equip them with various well-order relations.
We may ask: Can we do the same thing for IR?

If R can be equipped with a well-order relation, say, T', then the lexicographical ordering in
IR? induced by T will be a well-order relation in IR?, and will further provide a well-order
relation for C.

We may further ask: Is it possible to equip any arbitrary set equipped with a well-order
relation?

[t turns out that the answers to these questions are not quite trivial.

Well-ordering Principle.

Suppose A is a set. Then there exists some partial ordering T' in A such that A is well-
ordered by T

Remark. We do not ‘prove’ the Well-ordering Principle. It is taken as a fundamental
assumption in mathematics. (Of course, it is legitimate to choose between ‘believing the
Well-ordering Principle and ‘not believing' it.)





