0. This handout is a continuation of the Handout Partial orderings and total orderings.

1. **Definition.**

Let A be a set, and T be a partial ordering in A with graph G. Write $u \leq v$ exactly when $(u, v) \in G$.

Let B be a subset of A.

Let
$$\lambda \in B$$
. We say λ is a $\left\{ \begin{array}{l} \mathbf{greatest} \\ \mathbf{least} \end{array} \right\}$ element of B with respect to T if, for any $x \in B$, $\left\{ \begin{array}{l} x \leq \lambda \\ x \geq \lambda \end{array} \right\}$.

Remark. A subset of A has at most one greatest/least element with respect to T. Hence it makes sense to refer to such an element of A as 'the' greatest/least element with respect to T, if it exists.

Here in this Handout we focus on the question of existence of greatest/least elements for sets with respect to total orderings.

2. Example (A'). (Usual ordering for real numbers.)

The notion of greatest/least element for subsets of **IR** with respect to the usual ordering for real numbers reduces to that for 'greatest/least element for subsets of **IR**', introduced in the Handout *Greatest/least element*, *upper/lower bound*.

(a) According to the Well-ordering Principle for Integers, for any subset B of \mathbb{N} , if B is non-empty, then B has a least element (with respect to the usual ordering for natural numbers).

A non-empty subset of **N** does not necessarily have any greatest element.

(b) Let a, b be real numbers. Supposed a < b.

	least element	greatest element
(a,b)	nil	nil
a,b)	a	nil
$\overline{(a,b]}$	nil	b
$\overline{[a,b]}$	a	b

	least element	greatest element
$(a, +\infty)$	nil	nil
$[a, +\infty)$	a	nil
$\overline{(-\infty,b)}$	nil	nil
$\overline{(-\infty,b]}$	nil	b

3. **Definition.**

Let A be a set, and T be a partial ordering in A. We say T is a well-order relation in A if the statement (λ) holds:

 (λ) For any subset B of A, if B is non-empty then B has a least element with respect to T.

We also say that A is **well-ordered** by T, and that the poset (A, T) is well-ordered.

Simple examples and non-examples of well-ordered sets.

- (a) **N** is well-ordered by the usual ordering for natural numbers, according to Example (A'). (This is just a re-formulation of the statement of the Well-ordering Principle for Integers.) This is the primordial example of well-ordered sets.
- (b) Every non-empty subset of \mathbb{Z} which is bounded below in \mathbb{Z} is well-ordered by the usual ordering for integers.
 - **Z** is not well-ordered by the usual ordering for integers. (Why?)
- (c) **Q** is not well-ordered by the usual ordering for rational numbers. (Why?)
- (d) **R** is not well-ordered by the usual ordering for real numbers. (Why?)

4. Lemma (8).

Let A be a set, and T is a partial ordering in A.

Suppose A is well-ordered by T. Then A is totally ordered by T.

Proof of Lemma (8).

Let A be a set, and T be a partial ordering in A with graph G. Suppose A is well-ordered by T.

Pick any $x, y \in A$. Define $B = \{x, y\}$.

Then B is a non-empty subset of A.

By assumption, A is well-ordered by T.

Then B has a least element with respect to T, say, x.

Therefore, by definition, $(x, y) \in G$. Therefore $(x, y) \in G$ or $(y, x) \in G$.

It follows that A is totally ordered by T.

Non-examples on well-order relations.

According to Lemma (8), there is no chance for a partial ordering which is not a total ordering to be a well-order relation.

- Refer to Example (B). The partial ordering T_{div} in \mathbb{N} defined by divisibility is not a well-order relation, because it is not a total ordering in \mathbb{N} .
- Refer to Example (C). When E is a set which has at least two elements, $(\mathfrak{P}(E), \mathfrak{P}(E), G_{E,\text{subset}})$ is not a well-order relation, because it is not a total ordering in $\mathfrak{P}(E)$.

Reminder. The converse of Lemma (8) is false: a total ordering in a set is not necessarily a well-order relation in that set.

(For instance, the usual ordering for real numbers is a total ordering in \mathbb{R} but it is not a well-order relation in \mathbb{R} .)

5. Lemma (9).

Let A be a set. Suppose T is a well-order relation in A with graph G.

Then, for any subset B of A, $(B, B, G \cap B^2)$ is a well-order relation in B.

6. **Theorem (10).**

Let A be a non-empty set. Suppose T is a well-order relation in A with graph G. Write $x \leq y$ iff $(x, y) \in G$.

Then the statements below hold:

- (a) There exists some unique $\lambda \in A$ such that for any $x \in A \setminus \{\lambda\}$, $\lambda \prec x$.
- (b) For any $x \in A$, if x is not a greatest element of A with respect to T then there exists some unique $y \in A$ such that $x \prec y$ and (for any $z \in A$, if $x \preceq z \preceq y$ then z = x or z = y).

Remark. Theorem (10) brings out what is special about well-ordered posets.

- Statement (a) says that some unique element of A, namely the least element of A with respect to T, will be the 'starting element' of A, in the sense that no element of A will precede it with respect to T.
- Statement (b) says that it makes sense to talk about the (unique) 'next element' of A for each element of A, in the sense that no third element of A will be between these two.

This allows us to visualize the 'ordering' of all the elements of A, with respect to T, in the 'chain of inequalities'

$$\lambda \leq \lambda' \leq \lambda'' \leq \lambda''' \leq \cdots$$

in which

 λ is the least element of A with respect to T,

 λ' is the least element of $A\setminus\{\lambda\}$ with respect to T,

 λ'' is the least element of $A \setminus \{\lambda, \lambda'\}$ with respect to T,

 λ''' is the least element of $A\setminus\{\lambda,\lambda',\lambda''\}$ with respect to T, et cetera.

An illustration is how we may visualize the 'ordering' for all natural numbers with respect to its usual ordering:

$$0 \le 1 \le 2 \le 3 \le 4 \le \cdots$$

This cannot be done for the usual ordering for integers because \mathbb{Z} has no least element.

This cannot be done for the usual ordering for rational numbers because the notion of 'next rational' number does not make sense: between any two distinct rational numbers there is definitely a third rational number.

But we may ask:

• Is it possible to equip these sets with some other partial orderings which are well-order relations?

7. Example (D'). (Lexicographical ordering in \mathbb{N}^2 as a well-order relation in \mathbb{N}^2 .)

The lexicographical ordering in \mathbb{N}^2 is a well-order relation in \mathbb{N}^2 because the statement (†) holds:

(†) For any subset B of \mathbb{N}^2 , if B is non-empty, then B has a least element with respect to the lexicographical ordering in \mathbb{N}^2 .

Below is the idea for the argument for the statement (†). (The detail is left as an exercise.)

Suppose B is a non-empty subset of \mathbb{N}^2 .

Then we may pick some element of B, say, the ordered pair of natural numbers, say, (u, v).

The lexicographical ordering in \mathbb{N}^2 allows us to visualize the 'ordering' for all the elements of \mathbb{N}^2 , up to and including (u, v), through such a 'chain of inequalities' below:

$$(0,0) \le_{\text{lex}} (0,1) \le_{\text{lex}} (0,2) \le_{\text{lex}} \dots \le_{\text{lex}} (1,0) \le_{\text{lex}} (1,1) \le_{\text{lex}} \dots \le_{\text{lex}} (2,0) \le_{\text{lex}} \dots \le_{\text{lex}} (u,0) \le_{\text{lex}} (u,1) \le_{\text{lex}} \dots \le_{\text{lex}} (u,v)$$

So elements of B are listed in at least one of the rows (\sharp_0) , (\sharp_1) , (\sharp_2) , ..., (\sharp_u) , each with 'constant' first coordinate, in the table below:

The Well-ordering Principle for Integers guarantees that there will be a row in this table with the 'smallest value of label', say, s, so that some element of B, say, (s, w) is listed in the row (\sharp_s) .

```
There is no element \{(x_0): (0,0) \ (0,1) \ (0,2) \ (0,3) \ \cdots \ (0,w-1) \ (0,w) \ (0,w+1) \ \cdots \ (x_1): (1,0) \ (1,1) \ (1,2) \ (1,3) \ \cdots \ (1,w-1) \ (1,w) \ (1,w+1) \ \cdots \ (x_2): (2,0) \ (2,1) \ (2,2) \ (2,3) \ \cdots \ (2,w-1) \ (2,w) \ (2,w+1) \ \cdots \ (x_{s-1}).
```

Then the Well-ordering Principle for Integers further guarantees that amongst

$$(s,0),(s,1),(s,2),\cdots,(s,w-1),(s,w),$$

there will be an element of B with the 'smallest second coordinate', say, t.

There is no element
$$(\sharp_0): (0,0) \ (0,1) \ (0,2) \ (0,3) \ \cdots \ (0,t-1) \ (0,t) \ (0,t+1) \ \cdots$$
 wo element $(\sharp_1): (1,0) \ (1,1) \ (1,2) \ (1,3) \ \cdots \ (1,t-1) \ (1,t) \ (1,t+1) \ \cdots$ $(\sharp_2): (2,0) \ (2,1) \ (2,2) \ (2,3) \ \cdots \ (2,t-1) \ (2,t) \ (2,t+1) \ \cdots$ $(\sharp_s): (\sharp_s): (s,0) \ (s,1) \ (s,2) \ (s,3) \ \cdots \ (s,t-1) \ (s,t) \ (s,t+1) \ \cdots$ There is no element $(\sharp_s): (s,0) \ (s,1) \ (s,2) \ (s,3) \ \cdots \ (s,t-1) \ (s,t) \ (s,t+1) \ \cdots$ an element of B

(s,t) will be the least element of B with respect to the lexicographical ordering in \mathbb{N}^2 .

Example (D') is an illustration of the idea in Theorem (11).

8. Theorem (11).

Let A, B be sets. Suppose R is a well-order relation in A, and S is a well-order relation in B.

Then the lexicographical ordering in $A \times B$ induced by R and S is a well-order relation in $A \times B$.

9. Example (E). (Well-order relation in **Z** arising from the usual ordering for natural numbers.)

Recall that that **Z** is not well-ordered by the usual ordering for integers.

How, we may define a well-order relation in \mathbb{Z} with the help of the usual ordering for natural numbers.

Define the function
$$f: \mathbb{Z} \longrightarrow \mathbb{N}$$
 by $f(x) = \begin{cases} 2x & \text{if } x \text{ is non-negative} \\ -2x - 1 & \text{if } x \text{ is negative} \end{cases}$.

f is an injective function from **Z** to **N**.

Let
$$G = \{(x, y) \mid x \in \mathbb{Z} \text{ and } y \in \mathbb{Z} \text{ and } f(x) \leq f(y)\}, \text{ and } S = (\mathbb{Z}, \mathbb{Z}, G).$$

S is a well-order relation in \mathbb{Z} .

So we visualize the 'ordering' for all integers with respect to the well-order relation S, through the 'chain of inequalities' below:

$$0 \leq_S -1 \leq_S 1 \leq_S -2 \leq_S 2 \leq_S -3 \leq_S 3 \leq_S \cdots \leq_S n-1 \leq_S -n \leq_S n \leq_S \cdots$$

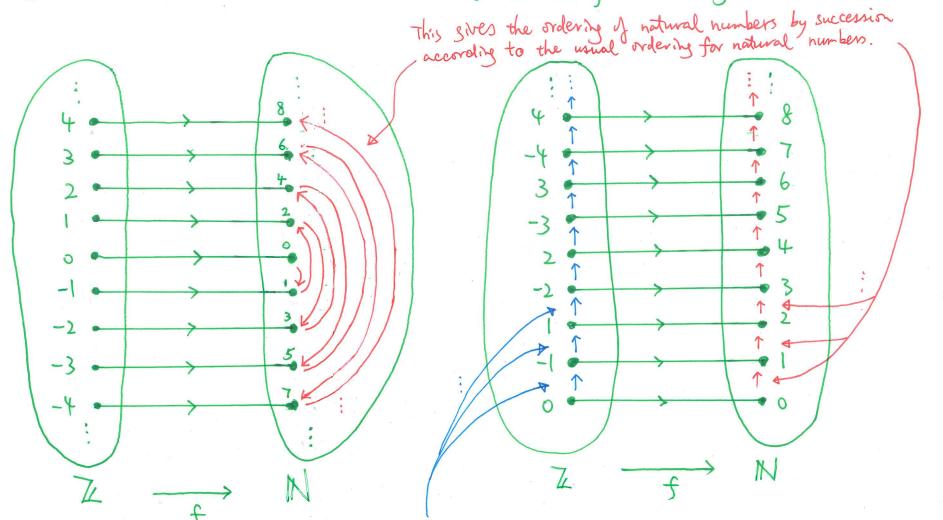
This is simply a direct translation, via f and S, of the chain of inequalities

$$0 \le 1 \le 2 \le 3 \le 4 \le 5 \le 6 \le \dots \le 2n - 2 \le 2n - 1 \le 2n \le \dots$$

Note that $0 \prec_S -1 \prec_S 1$ whereas -1 < 0 < 1. Hence S is certainly distinct from the usual ordering for integers.

Visualization for Example (E).

The injective function $f: \mathbb{Z} \to \mathbb{N}$ is given by $f(x) = \begin{cases} 2x & \text{if } x \text{ is non-negative} \\ -2x-1 & \text{if } x \text{ is negative} \end{cases}$



This is the partial ordering S in Z defined by the pullback of the usual ordering for natural humbers by the injective function f. It is a well-order relation in Z because the usual ordering for natural numbers is a well-order relation in M.

10. Example (F). (Well-order relation in N² which is not the same as the lexicographical ordering.)

Recall that the lexicographical ordering in \mathbb{N}^2 is a well-order relation in \mathbb{N}^2 . We now introduce, via an injective function from \mathbb{N}^2 to \mathbb{N} , another well-order relation in \mathbb{N}^2 which is not the lexicographical ordering in \mathbb{N}^2 .

Define the function $f: \mathbb{N}^2 \longrightarrow \mathbb{N}$ by $f(x,y) = 2^x 3^y$ for any $x,y \in \mathbb{N}$.

f is an injective function from \mathbb{N}^2 to \mathbb{N} . (You need Euclid's Lemma to justify this claim.)

Let
$$G = \{((s, t), (u, v)) \mid s, t, u, v \in \mathbb{N} \text{ and } f(s, t) \leq f(u, v)\}, \text{ and } S = (\mathbb{N}^2, \mathbb{N}^2, G).$$

S is a well-order relation in \mathbb{N}^2 .

So we visualize the 'ordering' for all the elements of \mathbb{N}^2 with respect to the well-order relation S, through the 'chain of inequalities' below:

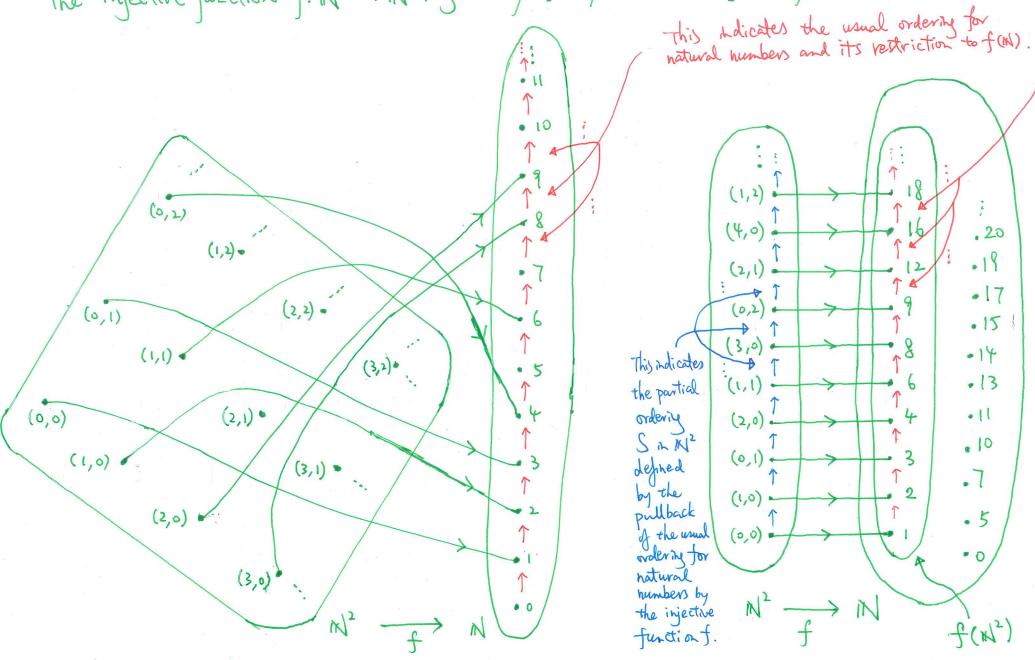
$$(0,0) \preceq_{\scriptscriptstyle S} (1,0) \preceq_{\scriptscriptstyle S} (0,1) \preceq_{\scriptscriptstyle S} (2,0) \preceq_{\scriptscriptstyle S} (1,1) \preceq_{\scriptscriptstyle S} (3,0) \preceq_{\scriptscriptstyle S} (0,2) \preceq_{\scriptscriptstyle S} (2,1) \preceq_{\scriptscriptstyle S} (4,0) \preceq_{\scriptscriptstyle S} (1,2) \preceq_{\scriptscriptstyle S} (3,1) \preceq_{\scriptscriptstyle S} (0,3) \preceq_{\scriptscriptstyle S} \cdots$$

This is simply a direct translation, via f and S, of the chain of inequalities

$$1 \le 2 \le 3 \le 4 \le 6 \le 8 \le 9 \le 12 \le 16 \le 18 \le 24 \le 27 \le \cdots$$

Visualitation for Example (F).

The injective function $f: \mathbb{N}^2 \to \mathbb{N}$ is given by $f(x,y) = 2^x \cdot 3^y$ for any $x,y \in \mathbb{N}$.



Note that

$$(1,0) \prec_S (0,1) \prec_S (2,0)$$

whereas

$$(1,0) <_{lex} (2,0) <_{lex} (0,1).$$

Hence S is certainly distinct from the lexicographical ordering for \mathbb{N}^2 .

Remark. Replacing f by another injective function from \mathbb{N}^2 to \mathbb{N} , we will obtain another well-order relation in \mathbb{N}^2 from such a construction.

(For instance, what do you obtain with the injective function $g: \mathbb{N}^2 \longrightarrow \mathbb{N}$ given by $g(x,y) = 2^x 5^y$ for any $x,y \in \mathbb{N}$? Or how about the injective function $h: \mathbb{N}^2 \longrightarrow \mathbb{N}$ given by $h(x,y) = 3^x 5^y$ for any $x,y \in \mathbb{N}$?)

Example (E), Example (F) are illustrations of the idea in Theorem (12), which is concerned with general partial orderings.

11. **Theorem (12).**

Let A, B be sets, and $f: A \longrightarrow B$ be an injective function.

Suppose T is a partial ordering in B with graph H. Write $u \preceq_T v$ exactly when $(u, v) \in H$.

Define $G = \{(x, y) \mid x, y \in A \text{ and } f(x) \leq_T f(y)\}, \text{ and } S = (A, A, G).$

Then S is a partial ordering in A with graph G.

If T is a total ordering in B then S is a total ordering in A.

If T is a well-order relation in B then S is a well-order relation in A.

Remark on terminology and notation. In the context of Theorem (12), the partial ordering S defined by the injective function f and the partial ordering T is called the **partial ordering in** A **defined by the pullback of** T **by** f. It is denoted by f^*T , and its graph is denoted by f^*H .

12. Example (G). (Well-order relation in Q arising from the usual ordering for natural numbers.)

Recall that that \mathbf{Q} is not well-ordered by the usual ordering for integers.

However, we may define a well-order relation in \mathbb{Q} with the help of the usual ordering for natural numbers.

- (a) Refer to Example (E). We have constructed a well-order relation in \mathbb{Z} , namely, S, (with the help of the usual ordering for natural numbers).
- (b) By Theorem (11), \mathbb{Z}^2 is well-ordered by the lexicographical ordering in \mathbb{Z}^2 induced by S and S.

We denote this well-order relation in \mathbb{Z}^2 by T.

$$S_{ghes}: 0 \leq_{\varsigma} -1 \leq_{\varsigma} 1 \leq_{\varsigma} -2 \leq_{\varsigma} 2 \leq_{\varsigma} -3 \leq_{\varsigma} 3 \leq_{\varsigma} ...$$

$$T_{ghes}: (0,0) \leq_{T} (0,-1) \leq_{T} (0,1) \leq_{T} (0,-2) \leq_{T} (0,2) \leq_{T} (0,-3) \leq_{T} (0,3) \leq_{T} ... \qquad \emptyset$$

$$S_{shes}: (0,0) \leq_{T} (0,-1) \leq_{T} (0,1) \leq_{T} (0,-2) \leq_{T} (0,2) \leq_{T} (0,-3) \leq_{T} (0,3) \leq_{T} ... \qquad \emptyset$$

$$S_{shes}: (0,0) \leq_{T} (0,-1) \leq_{T} (0,1) \leq_{T} (0,-2) \leq_{T} (0,2) \leq_{T} (0,-3) \leq_{T} (0,3) \leq_{T} ... \qquad \emptyset$$

$$S_{shes}: (0,0) \leq_{T} (0,-1) \leq_{T} (0,1) \leq_{T} (0,-2) \leq_{T} (0,2) \leq_{T} (0,3) \leq_{T} ... \qquad \emptyset$$

$$S_{shes}: (0,0) \leq_{T} (0,-1) \leq_{T} (0,1) \leq_{T} (0,2) \leq_{T} (0,2) \leq_{T} (0,3) \leq_{T} ... \qquad \emptyset$$

$$S_{shes}: (0,0) \leq_{T} (0,-1) \leq_{T} (0,1) \leq_{T} (0,2) \leq_{T} (0,2) \leq_{T} (0,3) \leq_{T} ... \qquad \emptyset$$

$$S_{shes}: (0,0) \leq_{T} (0,-1) \leq_{T} (0,1) \leq_{T} (0,2) \leq_{T} (0,2) \leq_{T} (0,3) \leq_{T} ... \qquad \emptyset$$

$$S_{shes}: (0,0) \leq_{T} (0,-1) \leq_{T} (0,1) \leq_{T} (0,1) \leq_{T} (0,2) \leq_{T} (0,2) \leq_{T} (0,3) \leq_{T} ... \qquad \emptyset$$

$$S_{shes}: (0,0) \leq_{T} (0,-1) \leq_{T} (0,1) \leq_{T} (0,2) \leq_{T} (0,2) \leq_{T} (0,2) \leq_{T} (0,3) \leq_{T} ... \qquad \emptyset$$

$$S_{shes}: (0,0) \leq_{T} (0,-1) \leq_{T} (0,1) \leq_{T} (0,2) \leq_{T} (0,2) \leq_{T} (0,2) \leq_{T} (0,3) \leq_{T} (0,3) \leq_{T} (0,3) \leq_{T} ... \qquad \emptyset$$

- (c) We take the statement (#) for granted:
 - (#) For any $r \in \mathbb{Q} \setminus \{0\}$, there exist some unique $p_r, q_r \in \mathbb{Z}$ such that $gcd(p_r, q_r) = 1$ and $q_r > 0$ and $r = \frac{p_r}{q_r}$.

(Justify the statement (#) as an exercise.)

Define the function $f: \mathbb{Q} \longrightarrow \mathbb{Z}^2$ by

$$f(r) = \begin{cases} (p_r, q_r) & \text{if } r \in \mathbb{Q} \setminus \{0\} \\ (0, 1) & \text{if } r = 0. \end{cases}$$

f is injective.

(d) According to Theorem (12), the partial ordering f^*T in \mathbb{Q} defined by the pullback of T by f is a well-order relation in \mathbb{Q} .

How to visualite f*T? For any $u, v \in \mathbb{Q}$, write $u \leq v$ exactly when (u, v) belongs to the graph of f^*T . $f(u) \leq_T f(v)$ 0 = 0 $64 - 1 = \frac{-1}{1} \le -\frac{1}{2} = \frac{-1}{2} \le -\frac{1}{3} = \frac{-1}{3} \le -\frac{1}{4} = \frac{-1}{4} \le -\frac{1}{5} = \frac{-1}{5} \le -\frac{1}{6} = \frac{-1}{6} \le -\frac{1}{7} = \frac{-1}{7} \le \cdots$ $4 \leq 1 = \frac{1}{2} \leq \frac{1}{3} \leq$ $\frac{1}{4} \leq \frac{1}{5} \leq \frac{1}{6} \leq \frac{1}{7} \leq \frac{1}{1}$ ∠-²/₇=⁻²/₇ ≤ 5 S ≤ -2 = -2 1 $\leq -\frac{2}{3} = \frac{-2}{3}$ $\leq -\frac{2}{5} = \frac{-2}{5}$ ≤ = ≤ ---- り $6 \leq 2 = \frac{2}{1}$ $\leq \frac{2}{5}$ $\leq -\frac{3}{7} = \frac{-3}{7} \leq \dots \qquad \stackrel{\bullet}{\longrightarrow}$ $\leq -\frac{3}{4} = \frac{-3}{4} \leq -\frac{3}{5} = \frac{-3}{5}$

$$4 - 3 = \frac{-3}{1} \le -\frac{3}{2} = \frac{-3}{2}$$
 $4 - \frac{3}{4} = \frac{-3}{4} \le -\frac{3}{5} = \frac{-3}{7}$
 $4 - \frac{3}{4} = \frac{-3}{4} \le -\frac{3}{5} = \frac{-3}{7}$
 $4 - \frac{3}{4} = \frac{-3}{4} \le -\frac{3}{5} = \frac{-3}{7}$
 $4 - \frac{3}{4} = \frac{-3}{4} \le -\frac{3}{4} = \frac{-3}{4} \le -\frac{3}{4} = \frac{-3}{4} \le -\frac{3}{4} = \frac{-3}{4} \le -\frac{3}{4} \le$

 $\leq \frac{3}{4} \leq \frac{3}{5}$ $4 \leq 3 = \frac{3}{1} \leq \frac{3}{2}$

Reminder. f^{*}T is not the usual ordering for rational numbers.

13. Well-ordering Principle, as a fundamental assumption in mathematics.

Example (E) and Example (G) tell us:

• Despite the fact that \mathbb{Z} , \mathbb{Q} themselves are not well-ordered by the usual ordering for real numbers, it is still possible to equip them with various well-order relations.

We may ask: Can we do the same thing for \mathbb{R} ?

If \mathbb{R} can be equipped with a well-order relation, say, T, then the lexicographical ordering in \mathbb{R}^2 induced by T will be a well-order relation in \mathbb{R}^2 , and will further provide a well-order relation for \mathbb{C} .

We may further ask: Is it possible to equip any arbitrary set equipped with a well-order relation?

It turns out that the answers to these questions are not quite trivial.

Well-ordering Principle.

Suppose A is a set. Then there exists some partial ordering T in A such that A is well-ordered by T.

Remark. We do not 'prove' the Well-ordering Principle. It is taken as a fundamental assumption in mathematics. (Of course, it is legitimate to choose between 'believing' the Well-ordering Principle and 'not believing' it.)