1. Compare Theorem (1), Theorem (2), Theorem (3):

Theorem (1).
Let B be a subset of IRR. The statements below hold:

(a) Forany x € B, x < x.
(b) For any x,y € B, if xt <y and y < x then x = y.
(c) For any x,y,z € B, ifx <y andy < z then z < z.

Theorem (2).
The statements below hold:

(a) Suppose x € N. Then z is divisible by x.

(b) Let x,y € N. Suppose y is divisible by x and x is divisible by y. Then x = y.

(¢c) Let x,y,z € N. Suppose y is divisible by x and z is divisible by y. Then z is divisible
by x.
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Theorem (1).
Let B be a subset of IRR. The statements below hold:

(a) For any x € B, x < x.
(b) For any x,y € B, if x <y and y < x then x = y.
(¢c) For any x,y,z € B, ifx <y andy < z then z < z.

Theorem (3).
Let E be a set. The statements below hold:

(a) For any A € ‘B(E), A C A.
(b) For any A, B € P(F), if AC B and B C A then A = B.
(¢c) For any A, B,C € *B(F), if AC B and B C C then A C C.

Theorem (1), Theorem (2), Theorem (3) suggest the presence of some common structure for
various mathematical objects. This mathematical structure is usually referred to as partial

ordering.



2. Definition.
Let A be a set, and T' be a relation in A with graph G.

(a) T is said to be reflexive if the statement (p) holds:
(p):  Foranyzx € A, (x,z) € G.
(b) T' is said to be anti-symmetric if the statement («) holds:
(a):  Foranyz,y € A, if (x,y) € G and (y,x) € G) then x = y.
(c) T is said to be transitive if the statement (7) holds:
(1) Foranyz,y,z € A, if (z,y) € G and (y, 2) € G) then (z,z2) € G.

Remark. The notions of reflexivity, anti-symmetry, and transitivity are ‘logically inde-
pendent’ of each other.

3. Definition.
Let A be a set, and T' be a relation in A with graph G.
T is said to be a partially ordering in A if T' is reflexive, anti-symmetric and transitive.

We may also say that A is partially ordered by T'. We may refer to the ordered pair (A, T)
as a poset.



4. Example (A). (Usual ordering for real numbers.)

Theorem (1)
formulated as:

which is concerned with the usual ordering for real numbers, can be re-

)

Suppose B is a subset of R. Define G = {(z,y) | x,y € B and x < y}.
Then (B, B, G) is a partial ordering.
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Example (A). (Usual ordering for real numbers.)

Theorem (1), which is concerned with the usual ordering for real numbers, can be re-
formulated as:

Suppose B is a subset of R. Define G = {(z,y) | x,y € B and x < y}.
Then (B, B, G) is a partial ordering.

Remark. Example (A) is the primordial example of partial orderings. The notations
and terminologies for general partial orderings, soon to be introduced, are inspired by the
usual ordering for real numbers.

We may think of the usual orderings in N, Z, Q as ‘restrictions’ to these sets of the usual
ordering for real numbers.

. Lemma (4).
Let A be a set. Suppose T’ is a partial ordering in A with graph G.
Then, for any subset C of A, (C,C,G N C?) is a partial ordering in C'

Remarks on terminologies and notations.
We call the partial ordering (C, C, G N C?) the restriction of T to C.



6. Example (B). (Divisibility for natural numbers.)

Theorem (2), which is concerned with divisibility for natural numbers, can be re-formulated
as:

Define Gy, = {(x,y) | =,y € N and y is divisible by x}, and Ty, = (N, N, G, ).
Then T}, is a partial ordering in N.

We call T}, the partial ordering in N defined by divisibility.

Remark. By Lemma (4), the restriction of T}, to any subset B of N defines a partial
ordering in B.
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Example (B). (Divisibility for natural numbers.)

Theorem (2), which is concerned with divisibility for natural numbers, can be re-formulated
as:

Define Gy, = {(x,y) | x,y € N and y is divisible by x}, and Ty, = (N, N, G, ).
Then T}, is a partial ordering in N.

We call T}, the partial ordering in N defined by divisibility.

Remark. By Lemma (4), the restriction of T}, to any subset B of N defines a partial
ordering in B.

Further remark.  Although the usual ordering for natural numbers and 7}, are both
partial orderings in N, there is a subtle but important difference between them:

« Every pair of natural numbers can be ‘compared’ in terms of the usual ordering. This is
more formally formulated as:
Foranyx,y e N, x <y ory < x.
« Not every pair of natural numbers can be ‘compared’ in terms of T},. This is more
formally formulated as:
There exists some x,y € N such that (x,y) ¢ Gg, and (y,x) ¢ G,.
For instance, (2,3) ¢ Gy, and (3,2) ¢ G..



7. Definition.
Let A be a set, and T' be a partial ordering in A with graph G

(a) Let x,y € A. We say that x,y are T-comparable if (x,y) € G or (y,z) € G.
(b) We say that T is strongly connected (or connex) if the statement (k) holds:
(k):  Foranyz,y € A, (x,y) € Gor(y,z) €G.

8. Definition.
Let A be a set, and T' be a partial ordering in A with graph G

(a) T is called a total ordering in A if T' is strongly connected.

We may also say that A is totally ordered by T, and that the poset (A,T) is totally
ordered.

(b) Let C' be a subset of A.

The set C' is called a chain with respect to I' if the restriction of T to C' is a total
ordering in C'.



9. Lemma (5).

Suppose A be a set, and T is a partial ordering in A. Then the statements below are logically
equivalent:

(a) T is strongly connected.
(b) T is a total ordering in A.
(¢c) A is a chain with respect to T

Moreover, if T' is a total ordering in A, then for any subset B of A, the restriction of T to
B is a total ordering in B.



10. Examples and non-examples on total orderings and chains.

(a) Refer to Example (A).
For any subset B of IR, the usual ordering in B defines a total ordering in B.

(b) Refer to Example (B).
The partial ordering T}, in N defined by divisibility is not a total ordering in N.

There are many proper subsets of N which are chains with respect to 1}, for instance:

{0}, {2F | k € N}, {3" | k € N}.

vy

However, none of the sets below is a chain with respect to T,
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11. Example (C). (Subset relation.)
Theorem (3)
can be re-formulated as:

Suppose E is a set. Define Gg e = {(U, V) | U,V € B(E) and U C V' }, and

TE ,subset (‘B(E), m(E)j GE,subset> .
Then Tg . is a partial ordering in P (F).

. which is concerned with the subset relation within an arbitrarily given set,

We call Tg . the partial ordering in SB(F) defined by the subset relation.
When E contains two or more elements, T ... 18 not a total ordering.

By Lemma (4), the restriction of the partial ordering T ... to any subset of SB(F) defines
a partial ordering on that subset of P(F£).
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12. Conventions on notations for partial orderings.

We are going to introduce some conventions on notations for general partial orderings.
They are inspired by the notations for usual orderings for real numbers and those for subset

relations.

Let A be a set and T" be a partial ordering in A with graph G.
Suppose we agree to write (x,y) € G as x =, Y.
We pronounce ‘x <, y’ as

‘x precedes or equals y under the partial ordering T".

(a) If T' is the only partial ordering in A under consideration, we may drop the reference to
the symbols T, G and write:
« ‘z =Xy inplaceof 'z =, vy ;
« ‘A is partially ordered by =<’ in place of A is partially ordered by T
« (A,=X)isa poset’in place of (A, T) is a poset; et cetera.
Under the above conventions, the statements (p), («), (7) that hold for the partial or-
dering 1" are re-formulated as:
(p): Foranyx € A, x 2.
(a):  Foranyx,y € A, if (x Xy and y =< x) then x = y.
(1):  Foranyx,y,z € A, if (xt <y andy =< z) then x =< 2.



(b) We also agree that the same symbol < will be used for the restriction of T' to any subset
of A.

(c) We may write ‘v <, y" as ‘y >, «" The latter is pronounced as

"y succeeds or equals x under the partial ordering T”

(d) We may write z <. y, or equivalently, y >, x, exactly when (z,y) € G and = # .

We pronounce ‘z <.y’ as
‘x precedes y under the partial ordering 1"
We pronounce ‘y > x’ as

‘y succeeds x under the partial ordering 1.

Warning. Care must be taken because of the visual resemblance between the symbol < and
the symbol <.

When we are using the symbol ‘=<’ for formulating statements concerned with a general
partial ordering T in an arbitrary set A, we have to deliberately remind ourselves that the
statement (k) may fail to hold:

(k):  Foranyx,y € A, x <yory 3.
In fact (k) holds exactly when the partial ordering T is a total ordering in A.



13. Lemma (6).

Let A be a set, and T be a partial ordering in A with graph GG. Write u =< v exactly when
(u,v) € G.

(a) Let x,y € A. The statements below are logically equivalent:

i. x,y are T-comparable. (x <y ory < x.)
ii. Exactly one of ‘x <y’, ‘x=1vy’, ‘v >y’ Is true.

(b) T' is strongly connected iff the statement (1) holds:
(Tx):  Forany x,y € A, exactly one of ‘x <y’, ‘x =y, ‘v =y Is true.

Remark. When T is indeed a total ordering in A, the statement (7x) is known as the
Law of Trichotomy in the poset (A, T).
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14. Example (D). (Lexicographical ordering in N.)
With the usual ordering in N, we are going to construct a total ordering in N?, which is
inspired by how words in a dictionary are arranged according to alphabetical order.

Define J = {((S,t), (u,v))

that J C (N*)2.

With a straightforward calculation, we can verify that 7" is a total ordering in N*.

s,t,u,v € N, and

cand T = (N?, N?,.J). Note
s <wor(s=wuandt < v)

The total ordering 7 is called the lexicographical ordering in N*.

For any s,t,u,v € N, we write (s,t) <. (u,v) exactly when ((s,t), (u,v)) € J.
Then by definition, (s,t) <. (u,v) iff [s <w or (s =u and t < v)].

[llustrations:
« (1,3) < (2,0). (Reason: 1 < 2.)
¢« (2,3) <. (2,4). (Reason: 2 =2 and 3 < 4.)

As a whole, T can be visualized as:
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Remark. We can apply the same method to construct the lexicographical ordering <
in N*, given by (%3):

lex

(x) For any r, s, t,u,v,w € N, (r,s,t) <. (u,v,w)iff [r <wor (r=wvands <v)or(r=u
and s = v and t < w)].

We can ‘inductively’ construct the lexicographical ordering in N* for each & € N\{0}.

Further remark. The above constructions ultimately rely on the fact that the usual
ordering in N is a total ordering in N. No other aspect of the natural number system has
anything to do with this construction.

Imitating the above construction, We can construct the lexicographical ordering <, in IR?

from the usual ordering in IR, which is given by (%):

lex

(x) For any s,t,u,v € R, (s,1) <. (u,v) iff [s <wuor(s=wuandt <v).
The lexicographical ordering in N? is the restriction of this total ordering in R

We can ‘inductively’ construct the lexicographical ordering in IR* for each k € N\{0}.

Example (D) is an illustration of the idea in Theorem (7), which is concerned with general
partial orderings.



15. Theorem (7).

Let A, B be sets. Suppose R is a partial ordering in A with graph G, and S is a partial
ordering in B with graph H.

Write s <, u exactly when (s,u) € G. Writet < v exactly when (t,v) € H.

s,u € A, and t,v € B, and }
) , and

s <,uor (s=wuand t < v

Define J = {((s,t), (u,v))
T =(Ax B,Ax B,J).

Then T is a partial ordering in A X B.

Moreover, if R is a total ordering in A and S is a total ordering in B, then T is a total
ordering in A x B.

Remark on terminologies and notations. 7T is called the lexicographical or-
dering in A x B induced by R and S.





