
1. Compare Theorem (1), Theorem (2), Theorem (3):

Theorem (1).
Let B be a subset of R. The statements below hold:

(a) For any x ∈ B, x ≤ x.
(b) For any x, y ∈ B, if x ≤ y and y ≤ x then x = y.
(c) For any x, y, z ∈ B, if x ≤ y and y ≤ z then x ≤ z.

Theorem (2).
The statements below hold:

(a) Suppose x ∈ N. Then x is divisible by x.
(b) Let x, y ∈ N. Suppose y is divisible by x and x is divisible by y. Then x = y.
(c) Let x, y, z ∈ N. Suppose y is divisible by x and z is divisible by y. Then z is divisible

by x.
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Theorem (1).
Let B be a subset of R. The statements below hold:

(a) For any x ∈ B, x ≤ x.
(b) For any x, y ∈ B, if x ≤ y and y ≤ x then x = y.
(c) For any x, y, z ∈ B, if x ≤ y and y ≤ z then x ≤ z.

Theorem (3).
Let E be a set. The statements below hold:

(a) For any A ∈ P(E), A ⊂ A.
(b) For any A,B ∈ P(E), if A ⊂ B and B ⊂ A then A = B.
(c) For any A,B,C ∈ P(E), if A ⊂ B and B ⊂ C then A ⊂ C.

Theorem (1), Theorem (2), Theorem (3) suggest the presence of some common structure for
various mathematical objects. This mathematical structure is usually referred to as partial
ordering.
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2. Definition.
Let A be a set, and T be a relation in A with graph G.

(a) T is said to be reflexive if the statement (ρ) holds:
(ρ): For any x ∈ A, (x, x) ∈ G.

(b) T is said to be anti-symmetric if the statement (α) holds:
(α): For any x, y ∈ A, if ((x, y) ∈ G and (y, x) ∈ G) then x = y.

(c) T is said to be transitive if the statement (τ ) holds:
(τ ): For any x, y, z ∈ A, if ((x, y) ∈ G and (y, z) ∈ G) then (x, z) ∈ G.

Remark. The notions of reflexivity, anti-symmetry, and transitivity are ‘logically inde-
pendent’ of each other.

3. Definition.
Let A be a set, and T be a relation in A with graph G.
T is said to be a partially ordering in A if T is reflexive, anti-symmetric and transitive.
We may also say that A is partially ordered by T . We may refer to the ordered pair (A, T )
as a poset.
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4. Example (A). (Usual ordering for real numbers.)
Theorem (1), which is concerned with the usual ordering for real numbers, can be re-
formulated as:

Suppose B is a subset of R. Define G = {(x, y) | x, y ∈ B and x ≤ y}.
Then (B,B,G) is a partial ordering.
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Example (A). (Usual ordering for real numbers.)
Theorem (1), which is concerned with the usual ordering for real numbers, can be re-
formulated as:

Suppose B is a subset of R. Define G = {(x, y) | x, y ∈ B and x ≤ y}.
Then (B,B,G) is a partial ordering.

Remark. Example (A) is the primordial example of partial orderings. The notations
and terminologies for general partial orderings, soon to be introduced, are inspired by the
usual ordering for real numbers.

We may think of the usual orderings in N,Z,Q as ‘restrictions’ to these sets of the usual
ordering for real numbers.

5. Lemma (4).
Let A be a set. Suppose T is a partial ordering in A with graph G.
Then, for any subset C of A, (C,C,G ∩ C2) is a partial ordering in C.

Remarks on terminologies and notations.
We call the partial ordering (C,C,G ∩ C2) the restriction of T to C.

5



6. Example (B). (Divisibility for natural numbers.)
Theorem (2), which is concerned with divisibility for natural numbers, can be re-formulated
as:

Define Gdiv = {(x, y) | x, y ∈ N and y is divisible by x}, and Tdiv = (N,N, Gdiv).
Then Tdiv is a partial ordering in N.

We call Tdiv the partial ordering in N defined by divisibility.

Remark. By Lemma (4), the restriction of Tdiv to any subset B of N defines a partial
ordering in B.
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Example (B). (Divisibility for natural numbers.)
Theorem (2), which is concerned with divisibility for natural numbers, can be re-formulated
as:

Define Gdiv = {(x, y) | x, y ∈ N and y is divisible by x}, and Tdiv = (N,N, Gdiv).
Then Tdiv is a partial ordering in N.

We call Tdiv the partial ordering in N defined by divisibility.

Remark. By Lemma (4), the restriction of Tdiv to any subset B of N defines a partial
ordering in B.

Further remark. Although the usual ordering for natural numbers and Tdiv are both
partial orderings in N, there is a subtle but important difference between them:
• Every pair of natural numbers can be ‘compared’ in terms of the usual ordering. This is

more formally formulated as:
For any x, y ∈ N, x ≤ y or y ≤ x.

• Not every pair of natural numbers can be ‘compared’ in terms of Tdiv. This is more
formally formulated as:

There exists some x, y ∈ N such that (x, y) /∈ Gdiv and (y, x) /∈ Gdiv.
For instance, (2, 3) /∈ Gdiv and (3, 2) /∈ Gdiv.
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7. Definition.
Let A be a set, and T be a partial ordering in A with graph G.

(a) Let x, y ∈ A. We say that x, y are T -comparable if (x, y) ∈ G or (y, x) ∈ G.
(b) We say that T is strongly connected (or connex) if the statement (κ) holds:

(κ): For any x, y ∈ A, (x, y) ∈ G or (y, x) ∈ G.

8. Definition.
Let A be a set, and T be a partial ordering in A with graph G.

(a) T is called a total ordering in A if T is strongly connected.
We may also say that A is totally ordered by T , and that the poset (A, T ) is totally
ordered.

(b) Let C be a subset of A.
The set C is called a chain with respect to T if the restriction of T to C is a total
ordering in C.
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9. Lemma (5).
Suppose A be a set, and T is a partial ordering in A. Then the statements below are logically
equivalent:

(a) T is strongly connected.
(b) T is a total ordering in A.
(c) A is a chain with respect to T .
Moreover, if T is a total ordering in A, then for any subset B of A, the restriction of T to
B is a total ordering in B.
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10. Examples and non-examples on total orderings and chains.
(a) Refer to Example (A).

For any subset B of R, the usual ordering in B defines a total ordering in B.

(b) Refer to Example (B).
The partial ordering Tdiv in N defined by divisibility is not a total ordering in N.

There are many proper subsets of N which are chains with respect to Tdiv, for instance:
{0}, {2k | k ∈ N}, {3k | k ∈ N}.

However, none of the sets below is a chain with respect to Tdiv:
{2j | j ∈ N} ∪ {3k | k ∈ N}, {2j · 3k | j, k ∈ N}.
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11. Example (C). (Subset relation.)
Theorem (3), which is concerned with the subset relation within an arbitrarily given set,
can be re-formulated as:

Suppose E is a set. Define GE,subset = {(U, V ) | U, V ∈ P(E) and U ⊂ V }, and
TE,subset = (P(E),P(E), GE,subset).
Then TE,subset is a partial ordering in P(E).

We call TE,subset the partial ordering in P(E) defined by the subset relation.

When E contains two or more elements, TE,subset is not a total ordering.

By Lemma (4), the restriction of the partial ordering TE,subset to any subset of P(E) defines
a partial ordering on that subset of P(E).
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12. Conventions on notations for partial orderings.
We are going to introduce some conventions on notations for general partial orderings.
They are inspired by the notations for usual orderings for real numbers and those for subset
relations.

Let A be a set and T be a partial ordering in A with graph G.
Suppose we agree to write (x, y) ∈ G as x ≼

T
y.

We pronounce ‘x ≼
T
y’ as

‘x precedes or equals y under the partial ordering T ’.
(a) If T is the only partial ordering in A under consideration, we may drop the reference to

the symbols T,G and write:
• ‘x ≼ y’ in place of ‘ x ≼

T
y ;

• ‘A is partially ordered by ≼’ in place of A is partially ordered by T ;
• ‘(A,≼) is a poset’ in place of (A, T ) is a poset; et cetera.
Under the above conventions, the statements (ρ), (α), (τ ) that hold for the partial or-
dering T are re-formulated as:
(ρ): For any x ∈ A, x ≼ x.
(α): For any x, y ∈ A, if (x ≼ y and y ≼ x) then x = y.
(τ ): For any x, y, z ∈ A, if (x ≼ y and y ≼ z) then x ≼ z.
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(b) We also agree that the same symbol ≼ will be used for the restriction of T to any subset
of A.

(c) We may write ‘x ≼
T
y’ as ‘y ≽

T
x’. The latter is pronounced as

‘y succeeds or equals x under the partial ordering T ’

(d) We may write x ≺
T
y, or equivalently, y ≻

T
x, exactly when (x, y) ∈ G and x ̸= y.

We pronounce ‘x ≺
T
y’ as

‘x precedes y under the partial ordering T ’.
We pronounce ‘y ≻

T
x’ as

‘y succeeds x under the partial ordering T ’.

Warning. Care must be taken because of the visual resemblance between the symbol ≤ and
the symbol ≼.
When we are using the symbol ‘≼’ for formulating statements concerned with a general
partial ordering T in an arbitrary set A, we have to deliberately remind ourselves that the
statement (κ) may fail to hold:

(κ): For any x, y ∈ A, x ≼ y or y ≼ x.
In fact (κ) holds exactly when the partial ordering T is a total ordering in A.
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13. Lemma (6).
Let A be a set, and T be a partial ordering in A with graph G. Write u ≼ v exactly when
(u, v) ∈ G.

(a) Let x, y ∈ A. The statements below are logically equivalent:

i. x, y are T -comparable. (x ≼ y or y ≼ x.)
ii. Exactly one of ‘x ≺ y’, ‘x = y’, ‘x ≻ y’ is true.

(b) T is strongly connected iff the statement (τχ) holds:
(τχ): For any x, y ∈ A, exactly one of ‘x ≺ y’, ‘x = y’, ‘x ≻ y’ is true.

Remark. When T is indeed a total ordering in A, the statement (τχ) is known as the
Law of Trichotomy in the poset (A, T ).
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14. Example (D). (Lexicographical ordering in N2.)
With the usual ordering in N, we are going to construct a total ordering in N2, which is
inspired by how words in a dictionary are arranged according to alphabetical order.

Define J =

{
((s, t), (u, v))

∣∣∣∣∣ s, t, u, v ∈ N, and
[s < u or (s = u and t ≤ v)]

}
, and T = (N2,N2, J). Note

that J ⊂ (N2)2.
With a straightforward calculation, we can verify that T is a total ordering in N2.

The total ordering T is called the lexicographical ordering in N2.

For any s, t, u, v ∈ N, we write (s, t) ≤lex (u, v) exactly when ((s, t), (u, v)) ∈ J .
Then by definition, (s, t) ≤lex (u, v) iff [s < u or (s = u and t ≤ v)].

Illustrations:
• (1, 3) <lex (2, 0). (Reason: 1 < 2.)
• (2, 3) <lex (2, 4). (Reason: 2 = 2 and 3 < 4.)
As a whole, T can be visualized as:
(0, 0) ≤lex (0, 1) ≤lex (0, 2) ≤lex · · · ≤lex (1, 0) ≤lex (1, 1) ≤lex · · · ≤lex (2, 0) ≤lex · · · ≤lex (3, 0) ≤lex · · · ≤lex (4, 0) ≤lex · · ·
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Remark. We can apply the same method to construct the lexicographical ordering ≤lex

in N3, given by (⋆3):
(⋆) For any r, s, t, u, v, w ∈ N, (r, s, t) ≤lex (u, v, w) iff [r < u or (r = u and s < v) or (r = u

and s = v and t ≤ w)].
We can ‘inductively’ construct the lexicographical ordering in Nk for each k ∈ N\{0}.

Further remark. The above constructions ultimately rely on the fact that the usual
ordering in N is a total ordering in N. No other aspect of the natural number system has
anything to do with this construction.

Imitating the above construction, We can construct the lexicographical ordering ≤lex in R2

from the usual ordering in R, which is given by (⋆):
(⋆) For any s, t, u, v ∈ R, (s, t) ≤lex (u, v) iff [s < u or (s = u and t ≤ v)].
The lexicographical ordering in N2 is the restriction of this total ordering in R2.
We can ‘inductively’ construct the lexicographical ordering in Rk for each k ∈ N\{0}.

Example (D) is an illustration of the idea in Theorem (7), which is concerned with general
partial orderings.
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15. Theorem (7).
Let A,B be sets. Suppose R is a partial ordering in A with graph G, and S is a partial
ordering in B with graph H .

Write s �
R
u exactly when (s, u) ∈ G. Write t �

S
v exactly when (t, v) ∈ H .

Define J =

{
((s, t), (u, v))

∣∣∣∣∣ s, u ∈ A, and t, v ∈ B, and
[s ≺

R
u or (s = u and t �

S
v)]

}
, and

T = (A×B,A×B, J).

Then T is a partial ordering in A×B.

Moreover, if R is a total ordering in A and S is a total ordering in B, then T is a total
ordering in A×B.

Remark on terminologies and notations. T is called the lexicographical or-
dering in A×B induced by R and S.
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