0. This is a continuation of the Handout Integers modulo n.

We assume $n \in \mathbb{N} \setminus \{0, 1\}$ throughout this Handout.

 R_n is the equivalence relation in \mathbb{Z} with graph $E_n = \{(x, y) \mid x, y \in \mathbb{Z} \text{ and } x \equiv y \pmod{n}\}$. We call R_n the **congru**ence modulo n relation on \mathbb{Z} .

Recall Lemma (1), Theorem (3) and terminologies associated to Theorem (3).

Lemma (1).

Let $x, y \in \mathbb{Z}$. The following statements are equivalent:

(a)	$x - y = qn$ for some $q \in \mathbb{Z}$.	(d)	$y \in [x].$
(b)	$x \equiv y (\text{mod } n).$	(e)	$x \in [y].$
(c)	$(x,y) \in E_n.$	(f)	[x] = [y].

Theorem (3).

The following statements hold:

- (0) $\mathbb{Z}_n = \{[0], [1], \cdots, [n-2], [n-1]\}.$
- (1) For any $u \in \mathbb{Z}_n$, $u \neq \emptyset$.
- (2) $\{x \in \mathbb{Z} : x \in u \text{ for some } u \in \mathbb{Z}_n\} = \mathbb{Z}.$

(3) For any $u, v \in \mathbb{Z}_n$, exactly one of the following statements hold: (3a) u = v. (3b) $u \cap v = \emptyset$.

Remark on terminologies.

- (a) In light of Statement (1), Statement (2) and Statement (3) of Theorem (3), we say that \mathbb{Z} is partitioned into the *n* pairwise disjoint non-empty sets [0], [1], ..., [n-2], [n-1].
 - We may simply refer to the set (of sets) $\mathbb{Z}_n = \{[0], [1], \cdots, [n-2], [n-1]\}$ as a **partition of** \mathbb{Z} .
- (b) Because such a partition of \mathbb{Z} arises ultimately from the equivalence relation R_n , we refer to \mathbb{Z}_n as the **quotient** of \mathbb{Z} by the equivalence relation R_n .

We are going to introduce two functions, called 'addition in \mathbb{Z}_n ' and 'multiplication in \mathbb{Z}_n ' respectively.

These two functions possess properties which are analogous to usual addition and usual multiplication for integers respectively. 'Addition in \mathbb{Z}_n ' makes \mathbb{Z}_n an abelian group. 'Addition in \mathbb{Z}_n ' and 'multiplication in \mathbb{Z}_n ' together makes \mathbb{Z}_n a commutative ring with unity. For certain values of n, they in fact make \mathbb{Z}_n a field.

1. Theorem (4).

Define

 $G_{\alpha} = \{((u, v), w) \mid u, v, w \in \mathbb{Z}_n \text{ and there exist } k, \ell \in \mathbb{Z} \text{ such that } u = [k], v = [\ell] \text{ and } w = [k + \ell] \}.$

Define $\alpha = (\mathbb{Z}_n^2, \mathbb{Z}_n, G_\alpha)$. Then α is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Proof.

Note that $G_{\alpha} \subset (\mathbb{Z}_n^2) \times \mathbb{Z}_n$. Hence α is a relation from from \mathbb{Z}_n^2 to \mathbb{Z}_n .

- (E) [Is each 'input pair' 'assigned' to at least one 'output' by α ?] Let $u, v \in \mathbb{Z}_n$. There exists some $k, \ell \in \mathbb{Z}$ such that u = [k] and $v = [\ell]$. Take $w = [k + \ell]$. By definition, we have $((u, v), w) \in G_{\alpha}$.
- (U) [Is each 'input pair' 'assigned' to at most one 'output' by α ?] Let $u, v, w, w' \in \mathbb{Z}_n$. Suppose $((u, v), w) \in G_\alpha$ and $((u, v), w') \in G_\alpha$. There exist some $k, \ell \in \mathbb{Z}$ such that u = [k], $v = [\ell]$ and $w = [k + \ell]$. There exist some $k', \ell' \in \mathbb{Z}$ such that $u = [k'], v = [\ell']$ and $w = [k' + \ell']$. Since [k] = u = [k'], we have $k \equiv k' \pmod{n}$. Since $[\ell] = v = [\ell']$, we have $\ell \equiv \ell' \pmod{n}$. $k - k', \ell - \ell'$ are divisible by n. Then $(k + \ell) - (k' + \ell') = (k - k') + (\ell - \ell')$ is divisible by n. Therefore $k+\ell \equiv k'+\ell' ({\rm mod}\ n).$ Hence $w=[k+\ell]=[k'+\ell']=w'.$

It follows that α is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

The function α is called **addition in Z**_n because of its resemblance with the function 'addition' for Remark. other more familiar mathematical objects, such as numbers and matrices. From now on, we write $\alpha(u, v)$ as u + v, and call it the sum of u, v.

2. Addition table for 'small' values of n:

Addition in \mathbb{Z}_2	Ado	dition in \mathbb{Z}	4	Ad	ldition in \overline{z}	Z_5	
			[1] [0]	[9]	+ [0]	[1] [2]	[3] $[4]$
$\begin{array}{c c c} + & [0] & [1] \\ \hline [0] & [0] & [1] \\ [1] & [1] & [0] \end{array}$	$\begin{array}{c ccccc} + & [0] & [1] & [2] \\ \hline [0] & [0] & [1] & [2] \\ \hline [1] & [1] & [2] & [0] \\ \hline [2] & [2] & [0] & [1] \end{array}$	$ \begin{array}{c cccc} + & 0 \\ \hline & [0] & [0] \\ & [1] & [1] \\ & [2] & [2] \\ & [3] & [3] \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[3] [0] [1] [2]		$ \begin{bmatrix} 1 & [2] \\ [2] & [3] \\ [3] & [4] \\ [4] & [0] \\ [0] & [1] $	$\begin{array}{ccc} [3] & [4] \\ [4] & [0] \\ [0] & [1] \\ [1] & [2] \\ [2] & [3] \end{array}$
	Addition in \mathbb{Z}_6			Additi	on in \mathbb{Z}_7		
	0] [1] [0] [0] [1] [F]	+ [0]	[1] [2]	[3] [4]	[5] [6]	
+ [0]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E [5]	[0] [0]	[1] [2]	[3] [4]	[5] [6]	_
[0] [1]	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix}$	E] [0]	[1] [1]	[2] [3]	[4] $[5]$	[6] [0]	
[1] [2]	$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \end{bmatrix}$)] [1]	[2] [2]	[3] [4]	[5] $[6]$	[0] [1]	
[3] [$\begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	[1]	$\begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$	[4] [5]	[6] [0]	[1] [2]	
[4] [4] [5] [0] [1] [2] [3]		[5] $[6]$	$\begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$	[2] $[3]$	
[5] [[5] [0] [1] [2] [B] [4]	[5] $[6]$ $[6]$	$\begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$ $\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$	$\begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$	
			[0] [0]	[0] [1]		[4] [0]	
A	ddition in \mathbb{Z}_8			А	ddition in	\mathbb{Z}_9	
$+ \mid [0] [1] [1]$	2] [3] [4] [5] [3] [7]	+ [0]	[1] [2]	[3] [4]	[5] $[6]$	[7] [8]
	2 [3] [4] [5] [[7] [7] [7]	[0] [0]	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$	$\begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$	[5] $[6]$	[7] [8]
[1] $[1]$ $[2]$ $[1]$	3 [4] [5] [6] [7] [0]		$\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$	[4] $[5]$	[6] [7]	[8] [0]
[2] [2] [3] [4]	4] [5] [6] [7] [) [1]	[2] $[2]$	[3] [4]	[5] $[6]$	[7] [8]	$\begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$
[3] [3] [4] [4]	5] [6] [7] [0] [.] [2]	$\begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$	[4] $[5]$ $[6]$	[0] [1] [7] [8]	[8] [0] [1]	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$ $\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$
[4] $[4]$ $[5]$ $[4]$	6] [7] [0] [1] [2] [3]	[4] [4] [5] [5]	[0] [0] [6] [7]	[7] [0] [8] [0]	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$
[5] [5] [6] [7] [0] [1] [2] [B] [4]	[6] [6]	[7] [8]	[0] [0]	[2] $[3]$	[4] [5]
[6] $[6]$ $[7]$ $[7]$	0 [1] [2] [3] [l] [5]		[8] [0]	[1] $[2]$	[3] [4]	[5] [6]
[7] [7] [0] [1] [2] [3] [4] [oj [6]	[8] [8]	[0] [1]	[2] [3]	[4] [5]	[6] [7]

3. Refer to the Handout Abelian groups, integral domains and fields. Theorem (5).

 $(\mathbb{Z}_n, +)$ is an abelian group.

- Proof.
 - [Associativity?] Let $u, v, w \in \mathbb{Z}_n$. There exist some $k, \ell, m \in \mathbb{Z}$ such that $u = [k], v = [\ell], w = [m]$. We have $(u + v) + w = ([k] + [\ell]) + [m] = [k + \ell] + [m] = [(k + \ell) + m] = [k + (\ell + m)] = [k] + ([\ell + m]) = [k] + ([\ell] + [m]) = u + (v + w)$.
 - [Commutativity?] Let $u, v \in \mathbb{Z}_n$. There exist some $k, \ell \in \mathbb{Z}$ such that $u = [k], v = [\ell]$. We have $u + v = [k] + [\ell] = [k + \ell] = [\ell + k] = [\ell] + [k] = v + u$.
 - [Existence of identity element?] Write $0_n = [0]$. Let $u \in \mathbb{Z}_n$. There exists some $k \in \mathbb{Z}$ such that u = [k]. We have $0_n + u = [0] + [k] = [0 + k] = [k] = u$, and $u + 0_n = 0_n + u = u$.
 - [Existence of inverse element?] Let $u \in \mathbb{Z}_n$. There exists some $k \in \mathbb{Z}$ such that u = [k]. Take v = [-k]. We have $u + v = [k] + [-k] = [k + (-k)] = [0] = 0_n$, and $v + u = u + v = 0_n$.

It follows that $(\mathbb{Z}_n, +)$ is an abelian group.

4. Corollary (6).

For any $u, v \in \mathbb{Z}_n$, there exists some unique $w \in \mathbb{Z}_n$ such that u + w = v. **Proof**. Let $u, v \in \mathbb{Z}_n$.

• [Existence argument.] There exist some $k, \ell \in \mathbb{Z}$ such that $u = [k], v = [\ell]$. Take $w = [\ell - k]$. We have $u + w = [k] + [\ell - k] = [k + \ell - k] = [\ell] = v$. • [Uniqueness argument.]

Let $w, w' \in \mathbb{Z}_n$. Suppose u + w = v and u + w' = v. There exists some $t \in \mathbb{Z}_n$ such that $t + u = 0_n$. Now we have $w = 0_n + w = (t + u) + w = t + (u + w) = t + v = t + (u + w') = (t + u) + w' = 0_n + w' = w'$.

Here we 'subtract u from v': w is the difference of v from u, and we write w = v - u. We write $0_n - u$ Remark. as -u; it is the unique (additive) inverse of u.

5. Theorem (7).

Define

$$G_{\mu} = \{((u, v), w) \mid u, v, w \in \mathbb{Z}_n \text{ and there exist } k, \ell \in \mathbb{Z} \text{ such that } u = [k], v = [\ell] \text{ and } w = [k\ell] \}.$$

Define $\mu = (\mathbb{Z}_n^2, \mathbb{Z}_n, G_\mu)$. Then μ is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n . Proof.

Note that $G_{\mu} \subset (\mathbb{Z}_n^2) \times \mathbb{Z}_n$. Hence μ is a relation from from \mathbb{Z}_n^2 to \mathbb{Z}_n .

- (E) [Is each 'input pair' 'assigned' to at least one 'output' by μ ?] Let $u, v \in \mathbb{Z}_n$. There exists some $k, \ell \in \mathbb{Z}$ such that u = [k] and $v = [\ell]$. Take $w = [k\ell]$. By definition, we have $((u, v), w) \in G_{\mu}.$
- (U) [Is each 'input pair' 'assigned' to at most one 'output' by μ ?] Let $u, v, w, w' \in \mathbb{Z}_n$. Suppose $((u, v), w) \in G_\mu$ and $((u, v), w') \in G_\mu$. There exist some $k, \ell \in \mathbb{Z}$ such that u = [k], $v = [\ell]$ and $w = [k\ell]$. There exist some $k', \ell' \in \mathbb{Z}$ such that $u = [k'], v = [\ell']$ and $w = [k'\ell']$. Since [k] = u = [k'], we have $k \equiv k' \pmod{n}$. Since $[\ell] = v = [\ell']$, we have $\ell \equiv \ell' \pmod{n}$. $k-k', \ell-\ell'$ are divisible by n. Then $k\ell-k'\ell' = (k-k')\ell+k'(\ell-\ell')$ is divisible by n. Therefore $k\ell \equiv k'\ell' \pmod{n}$. Hence $w = [k\ell] = [k'\ell'] = w'$.

It follows that μ is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Remark. The function μ is called **multiplication in** \mathbb{Z}_n because of its resemblance with the function 'multiplication' for other more familiar mathematical objects, such as numbers and matrices. From now on, we write $\mu(u, v)$ as $u \times v$, and call it the product of u, v.

6. Multiplication table for 'small' values of n:

Multiplication in \mathbb{Z}_2	Multiplication in \mathbb{Z}_3	Multiplication in \mathbb{Z}_4	Multiplication in \mathbb{Z}_5			
$\begin{array}{c c c} \times & [0] & [1] \\ \hline [0] & [0] & [0] \\ [1] & [0] & [1] \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

×	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

Multiplication in \mathbb{Z}_6

Multiplication in \mathbb{Z}_8

\times	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[2]	[0]	[2]	[4]	[6]	[0]	[2]	[4]	[6]
[3]	[0]	[3]	[6]	[1]	[4]	[7]	[2]	[5]
[4]	[0]	[4]	[0]	[4]	[0]	[4]	[0]	[4]
[5]	[0]	[5]	[2]	[7]	[4]	[1]	[6]	[3]
[6]	[0]	[6]	[4]	[2]	[0]	[6]	[4]	[2]
[7]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

Multiplication in \mathbb{Z}_7										
×	[0]	[1]	[2]	[3]	[4]	[5]	[6]			
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]			
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]			
[2]	[0]	[2]	[4]	[6]	[1]	[3]	[5]			
[3]	[0]	[3]	[6]	[2]	[5]	[1]	[4]			
[4]	[0]	[4]	[1]	[5]	[2]	[6]	[3]			
[5]	[0]	[5]	[3]	[1]	[6]	[4]	[2]			
[6]	[0]	[6]	[5]	[4]	[3]	[2]	[1]			

Multiplication in \mathbb{Z}_9											
×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]		
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		
[2]	[0]	[2]	[4]	[6]	[8]	[1]	[3]	[5]	[7]		
[3]	[0]	[3]	[6]	[0]	[3]	[6]	[0]	[3]	[6]		
[4]	[0]	[4]	[8]	[3]	[7]	[2]	[6]	[1]	[5]		
[5]	[0]	[5]	[1]	[6]	[2]	[7]	[3]	[8]	[4]		
[6]	[0]	[6]	[3]	[0]	[6]	[3]	[0]	[6]	[3]		
[7]	[0]	[7]	[5]	[3]	[1]	[8]	[6]	[4]	[2]		
[8]	[0]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]		

7. Theorem (8).

The following statements hold:

- (a) For any $u, v \in \mathbb{Z}_n$, $u \times v = v \times u$.
- (b) For any $u, v, w \in \mathbb{Z}_n$, $(u \times v) \times w = u \times (v \times w)$.
- (c) There exists some $e \in \mathbb{Z}_n$, namely e = [1], such that $e \times u = u \times e = u$.
- (d) For any $u, v, w \in \mathbb{Z}_n$, $u \times (v + w) = (u \times v) + (u \times w)$ and $(u + v) \times w = (u \times w) + (v \times w)$.

Proof.

- (a) Let $u, v \in \mathbb{Z}_n$. There exist some $k, \ell \in \mathbb{Z}$ such that $u = [k], v = [\ell]$. We have $u \times v = [k] \times [\ell] = [\ell \ell] = [\ell k] = [\ell] \times [k] = v \times u$.
- (b) Let $u, v, w \in \mathbb{Z}_n$. There exist some $k, \ell, m \in \mathbb{Z}$ such that $u = [k], v = [\ell], w = [m]$. We have $(u \times v) \times w = ([k] \times [\ell]) \times [m] = [k\ell] \times [m] = [(k\ell)m] = [k(\ell m)] = [k] \times [\ell m] = [k] \times ([\ell] \times [m]) = u \times (v \times w)$.
- (c) Note that $[1] \in \mathbb{Z}_n$. Pick any $u \in \mathbb{Z}_n$. There exists some $k \in \mathbb{Z}$ such that u = [k]. We have $[1] \times u = [1] \times [k] = [1 \cdot k] = [k] = u$ and $u \times [1] = [1] \times u = u$.

(d) Let $u, v, w \in \mathbb{Z}_n$. There exist some $k, \ell, m \in \mathbb{Z}$ such that $u = [k], v = [\ell], w = [m]$. We have $u \times (v+w) = [k] \times ([\ell]+[m]) = [k] \times [\ell+m] = [k(\ell+m)] = [k\ell+km] = [k\ell]+[km] = ([k] \times [\ell]) + ([k] \times [m]) = (u \times v) + (u \times w)$. Also, $(u+v) \times w = w \times (u+v) = (w \times u) + (w \times v) = (u \times w) + (v \times w)$.

Remark on terminologies.

Because of Statement (c), it is natural for us to write [1] as 1_n .

By virtue of Theorem (4), Theorem (5), Theorem (7) and Theorem (8), we refer to $(\mathbb{Z}_n, +, \times)$ as a **commutative rings with unity** with additive identity 0_n and multiplicative identity 1_n .

8. For the moment, assume n is a prime number. Write n = p.

Lemma (9).

For any $x \in \mathbb{Z}$, if x is not divisible by p then there exists some $y \in \mathbb{Z}$ such that $xy \equiv 1 \pmod{p}$ and y is not divisible by p.

Proof.

Pick any $x \in \mathbb{Z}$. Suppose x is not divisible by p. Then gcd(x, p) = 1. By Bezôut's Identity, there exist some $y, t \in \mathbb{Z}$ such that yx + tp = 1. We have xy - 1 = tp. Then xy - 1 is divisible by p. Therefore $xy \equiv 1 \pmod{p}$.

We verify that y is not divisible by p.

• Suppose it were true that y was divisible by p. Then there would exist some $s \in \mathbb{Z}$ such that y = sp. We would have (sx + t)p = yx + tp = 1. Therefore 1 would be divisible by p. Contradiction arises. Hence y is not divisible by p in the first place.

Theorem (10).

Let $u \in \mathbb{Z}_p$. Suppose $u \neq 0_p$. Then there exists some unique $v \in \mathbb{Z}_p \setminus \{0_p\}$ such that $v \times u = u \times v = 1_p$. **Proof.**

Let $u \in \mathbb{Z}_p$. Suppose $u \neq 0_p$.

There exists some $k \in \mathbb{Z}$ such that u = [k]. Since $u \neq 0_p$, we have $k \notin [0]$. Therefore k is not divisible by p. (Why?) Now there exists some $\ell \in \mathbb{Z}$ such that $k\ell \equiv 1 \pmod{p}$ and ℓ is not divisible by p.

Take $v = [\ell]$. Since ℓ is not divisible by p, we have $v \neq 0_p$. We have $u \times v = [k] \times [\ell] = [k\ell] = [1] = 1_p$. Also $v \times u = u \times v = 1_p$.

Corollary (11).

Let $u, v \in \mathbb{Z}_p$. Suppose $u \neq 0_p$ and $v \neq 0_p$. Then there exists some unique $w \in \mathbb{Z}_p \setminus \{0_p\}$ such that $u \times w = v$. **Proof.**

Let $u, v \in \mathbb{Z}_p$. Suppose $u \neq 0_p$ and $v \neq 0_p$.

• [Existence argument.]

There exists some $\tilde{u} \in \mathbb{Z}_p \setminus \{0_p\}$ such that $u \times \tilde{u} = \tilde{u} \times u = 1_p$. Take $w = \tilde{u} \times u$. We have $u \times w = u \times (\tilde{u} \times v) = (u \times \tilde{u}) \times v = 1_p \times v = v$. We verify that $w \neq 0_p$:

- * Suppose it were true that $w = 0_p$. There exists some $k \in \mathbb{Z}_p$ such that u = [k]. Now we would have $v = u \times w = [k] \times [0] = [k \times 0] = [0] = 0_p$. But $v \neq 0_p$. Contradiction arises. Hence $w \neq 0_p$ in the first place.
- [Uniqueness argument.]

Let $w, w' \in \mathbb{Z}_p \setminus \{0_p\}$. Suppose $u \times w = v$ and $u \times w' = v$. Then $u \times w = u \times w'$.

There exist some $k, m, m' \in \mathbb{Z}$ such that u = [k], w = [m] and w' = [m']. Now $[km] = [k] \times [m] = [k] \times [m'] = [km']$. Then $km \equiv km' \pmod{p}$. Therefore $k(m - m') \equiv 0 \pmod{p}$. k(m - m') is divisible by p.

Recall that $u \neq 0_p$. Then k is not divisible by p. By Euclid's Lemma, m - m' is divisible by p. Therefore $m \equiv m' \pmod{p}$. Hence w = [m] = [m'] = w'.

Remark on terminologies.

By virtue of Theorem (10), we refer to $(\mathbb{Z}_p, +, \times)$ as a **field**. Because \mathbb{Z}_p has only finitely many elements, $(\mathbb{Z}_p, +, \times)$ is a **finite field**, in contrast to 'infinite' fields like $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$ and $(\mathbb{C}, +, \times)$.

9. What if n is definitely not a prime number?

Theorem (12).

Suppose n is not a prime number. Then there exist some $u, v \in \mathbb{Z}_n \setminus \{0_n\}$ such that $u \times v = 0_n$.

Proof.

Suppose n is not a prime number. Then there exists some positive integers h, k such that 1 < h < n and 1 < k < nand hk = n. By the definition of multiplication in \mathbb{Z}_n , we have $[h] \times [k] = [n] = 0_n$. But since 1 < h < n and 1 < k < n, we also have $[h] \neq 0_n$ and $[k] \neq 0_n$.

Such elements u, v of $\mathbb{Z}_n \setminus \{0_n\}$ which satisfy $u \times v = 0_n$ are called **zero divisors**. Remark.

10. The result below holds whether n is a prime number or not.

Theorem (13).

 $\underbrace{\frac{n+1_n+\dots+1_n}{n}}_{n \text{ times}} = 0_n.$

Proof.

By definition, $\underbrace{1_n + 1_n + \dots + 1_n}_{n \text{ times}} = \underbrace{[1] + [1] + \dots + [1]}_{n \text{ times}} = \underbrace{[1 + 1 + \dots + 1]}_{n \text{ times}} = [n] = 0_n.$

Remark. We do not obtain the integer 0 by adding up many copies of the integer 1 together.

The commutative ring with unity $(\mathbb{Z}_n, +, \times)$ is some mathematical object which possesses many properties common to $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, but which is decisively different from them. (*This is one of the starting points of MATH2070.*)