
MATH1050 Arithmetic in Integers modulo n

0. This is a continuation of the Handout Integers modulo n.
We assume n ∈ N\{0, 1} throughout this Handout.
Rn is the equivalence relation in Z with graph En = {(x, y) | x, y ∈ Z and x ≡ y(mod n)}. We call Rn the congru-
ence modulo n relation on Z.
Recall Lemma (1), Theorem (3) and terminologies associated to Theorem (3).
Lemma (1).
Let x, y ∈ Z. The following statements are equivalent:
(a) x− y = qn for some q ∈ Z.
(b) x ≡ y(mod n).
(c) (x, y) ∈ En.

(d) y ∈ [x].
(e) x ∈ [y].
(f) [x] = [y].

Theorem (3).
The following statements hold:

(0) Zn = {[0], [1], · · · , [n− 2], [n− 1]}.
(1) For any u ∈ Zn, u ̸= ∅.
(2) {x ∈ Z : x ∈ u for some u ∈ Zn} = Z.
(3) For any u, v ∈ Zn, exactly one of the following statements hold: (3a) u = v. (3b) u ∩ v = ∅.

Remark on terminologies.

(a) In light of Statement (1), Statement (2) and Statement (3) of Theorem (3), we say that Z is partitioned into
the n pairwise disjoint non-empty sets [0], [1], ..., [n− 2], [n− 1].
We may simply refer to the set (of sets) Zn = {[0], [1], · · · , [n− 2], [n− 1]} as a partition of Z.

(b) Because such a partition of Z arises ultimately from the equivalence relation Rn, we refer to Zn as the quotient
of Z by the equivalence relation Rn.

We are going to introduce two functions, called ‘addition in Zn’ and ‘multiplication in Zn’ respectively.
These two functions possess properties which are analogous to usual addition and usual multiplication for integers
respectively. ‘Addition in Zn’ makes Zn an abelian group. ‘Addition in Zn’ and ‘multiplication in Zn’ together maks
Zn a commutative ring with unity. For certain values of n, they in fact make Zn a field.

1. Theorem (4).
Define

Gα = {((u, v), w) | u, v, w ∈ Zn and there exist k, ℓ ∈ Z such that u = [k], v = [ℓ] and w = [k + ℓ]}.

Define α = (Zn
2,Zn, Gα). Then α is a function from Zn

2 to Zn.
Proof.
Note that Gα ⊂ (Zn

2)×Zn. Hence α is a relation from from Zn
2 to Zn.

(E) [Is each ‘input pair’ ‘assigned’ to at least one ‘output’ by α?]
Let u, v ∈ Zn. There exists some k, ℓ ∈ Z such that u = [k] and v = [ℓ]. Take w = [k + ℓ]. By definition, we
have ((u, v), w) ∈ Gα.

(U) [Is each ‘input pair’ ‘assigned’ to at most one ‘output’ by α?]
Let u, v, w,w′ ∈ Zn. Suppose ((u, v), w) ∈ Gα and ((u, v), w′) ∈ Gα. There exist some k, ℓ ∈ Z such that u = [k],
v = [ℓ] and w = [k + ℓ]. There exist some k′, ℓ′ ∈ Z such that u = [k′], v = [ℓ′] and w = [k′ + ℓ′].
Since [k] = u = [k′], we have k ≡ k′(mod n). Since [ℓ] = v = [ℓ′], we have ℓ ≡ ℓ′(mod n).
k − k′, ℓ − ℓ′ are divisible by n. Then (k + ℓ) − (k′ + ℓ′) = (k − k′) + (ℓ − ℓ′) is divisible by n. Therefore
k + ℓ ≡ k′ + ℓ′(mod n). Hence w = [k + ℓ] = [k′ + ℓ′] = w′.

It follows that α is a function from Zn
2 to Zn.

Remark. The function α is called addition in Zn because of its resemblance with the function ‘addition’ for
other more familiar mathematical objects, such as numbers and matrices. From now on, we write α(u, v) as u + v,
and call it the sum of u, v.
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2. Addition table for ‘small’ values of n:

Addition in Z2 Addition in Z3 Addition in Z4 Addition in Z5

+ [0] [1]

[0] [0] [1]

[1] [1] [0]

+ [0] [1] [2]

[0] [0] [1] [2]

[1] [1] [2] [0]

[2] [2] [0] [1]

+ [0] [1] [2] [3]

[0] [0] [1] [2] [3]

[1] [1] [2] [3] [0]

[2] [2] [3] [0] [1]

[3] [3] [0] [1] [2]

+ [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]

[1] [1] [2] [3] [4] [0]

[2] [2] [3] [4] [0] [1]

[3] [3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

Addition in Z6 Addition in Z7

+ [0] [1] [2] [3] [4] [5]

[0] [0] [1] [2] [3] [4] [5]

[1] [1] [2] [3] [4] [5] [0]

[2] [2] [3] [4] [5] [0] [1]

[3] [3] [4] [5] [0] [1] [2]

[4] [4] [5] [0] [1] [2] [3]

[5] [5] [0] [1] [2] [3] [4]

+ [0] [1] [2] [3] [4] [5] [6]

[0] [0] [1] [2] [3] [4] [5] [6]

[1] [1] [2] [3] [4] [5] [6] [0]

[2] [2] [3] [4] [5] [6] [0] [1]

[3] [3] [4] [5] [6] [0] [1] [2]

[4] [4] [5] [6] [0] [1] [2] [3]

[5] [5] [6] [0] [1] [2] [3] [4]

[6] [6] [0] [1] [2] [3] [4] [5]

Addition in Z8 Addition in Z9

+ [0] [1] [2] [3] [4] [5] [6] [7]

[0] [0] [1] [2] [3] [4] [5] [6] [7]

[1] [1] [2] [3] [4] [5] [6] [7] [0]

[2] [2] [3] [4] [5] [6] [7] [0] [1]

[3] [3] [4] [5] [6] [7] [0] [1] [2]

[4] [4] [5] [6] [7] [0] [1] [2] [3]

[5] [5] [6] [7] [0] [1] [2] [3] [4]

[6] [6] [7] [0] [1] [2] [3] [4] [5]

[7] [7] [0] [1] [2] [3] [4] [5] [6]

+ [0] [1] [2] [3] [4] [5] [6] [7] [8]

[0] [0] [1] [2] [3] [4] [5] [6] [7] [8]

[1] [1] [2] [3] [4] [5] [6] [7] [8] [0]

[2] [2] [3] [4] [5] [6] [7] [8] [0] [1]

[3] [3] [4] [5] [6] [7] [8] [0] [1] [2]

[4] [4] [5] [6] [7] [8] [0] [1] [2] [3]

[5] [5] [6] [7] [8] [0] [1] [2] [3] [4]

[6] [6] [7] [8] [0] [1] [2] [3] [4] [5]

[7] [7] [8] [0] [1] [2] [3] [4] [5] [6]

[8] [8] [0] [1] [2] [3] [4] [5] [6] [7]

3. Refer to the Handout Abelian groups, integral domains and fields.
Theorem (5).
(Zn,+) is an abelian group.
Proof.

• [Associativity?]
Let u, v, w ∈ Zn. There exist some k, ℓ,m ∈ Z such that u = [k], v = [ℓ], w = [m]. We have (u + v) + w =
([k] + [ℓ]) + [m] = [k + ℓ] + [m] = [(k + ℓ) +m] = [k + (ℓ+m)] = [k] + [ℓ+m] = [k] + ([ℓ] + [m]) = u+ (v + w).

• [Commutativity?]
Let u, v ∈ Zn. There exist some k, ℓ ∈ Z such that u = [k], v = [ℓ]. We have u+ v = [k]+ [ℓ] = [k+ ℓ] = [ℓ+k] =
[ℓ] + [k] = v + u.

• [Existence of identity element?]
Write 0n = [0]. Let u ∈ Zn. There exists some k ∈ Z such that u = [k]. We have 0n + u = [0] + [k] = [0 + k] =
[k] = u, and u+ 0n = 0n + u = u.

• [Existence of inverse element?]
Let u ∈ Zn. There exists some k ∈ Z such that u = [k]. Take v = [−k]. We have u+v = [k]+[−k] = [k+(−k)] =
[0] = 0n, and v + u = u+ v = 0n.

It follows that (Zn,+) is an abelian group.

4. Corollary (6).
For any u, v ∈ Zn, there exists some unique w ∈ Zn such that u+ w = v.
Proof.
Let u, v ∈ Zn.

• [Existence argument.]
There exist some k, ℓ ∈ Z such that u = [k], v = [ℓ]. Take w = [ℓ−k]. We have u+w = [k]+[ℓ−k] = [k+ℓ−k] =
[ℓ] = v.
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• [Uniqueness argument.]
Let w,w′ ∈ Zn. Suppose u + w = v and u + w′ = v. There exists some t ∈ Zn such that t + u = 0n. Now we
have w = 0n + w = (t+ u) + w = t+ (u+ w) = t+ v = t+ (u+ w′) = (t+ u) + w′ = 0n + w′ = w′.

Remark. Here we ‘subtract u from v’: w is the difference of v from u, and we write w = v − u. We write 0n − u
as −u; it is the unique (additive) inverse of u.

5. Theorem (7).
Define

Gµ = {((u, v), w) | u, v, w ∈ Zn and there exist k, ℓ ∈ Z such that u = [k], v = [ℓ] and w = [kℓ]}.

Define µ = (Zn
2,Zn, Gµ). Then µ is a function from Zn

2 to Zn.
Proof.
Note that Gµ ⊂ (Zn

2)×Zn. Hence µ is a relation from from Zn
2 to Zn.

(E) [Is each ‘input pair’ ‘assigned’ to at least one ‘output’ by µ?]
Let u, v ∈ Zn. There exists some k, ℓ ∈ Z such that u = [k] and v = [ℓ]. Take w = [kℓ]. By definition, we have
((u, v), w) ∈ Gµ.

(U) [Is each ‘input pair’ ‘assigned’ to at most one ‘output’ by µ?]
Let u, v, w,w′ ∈ Zn. Suppose ((u, v), w) ∈ Gµ and ((u, v), w′) ∈ Gµ. There exist some k, ℓ ∈ Z such that u = [k],
v = [ℓ] and w = [kℓ]. There exist some k′, ℓ′ ∈ Z such that u = [k′], v = [ℓ′] and w = [k′ℓ′].
Since [k] = u = [k′], we have k ≡ k′(mod n). Since [ℓ] = v = [ℓ′], we have ℓ ≡ ℓ′(mod n).
k−k′, ℓ−ℓ′ are divisible by n. Then kℓ−k′ℓ′ = (k−k′)ℓ+k′(ℓ−ℓ′) is divisible by n. Therefore kℓ ≡ k′ℓ′(mod n).
Hence w = [kℓ] = [k′ℓ′] = w′.

It follows that µ is a function from Zn
2 to Zn.

Remark. The function µ is called multiplication in Zn because of its resemblance with the function ‘multipli-
cation’ for other more familiar mathematical objects, such as numbers and matrices. From now on, we write µ(u, v)
as u× v, and call it the product of u, v.

6. Multiplication table for ‘small’ values of n:

Multiplication in Z2 Multiplication in Z3 Multiplication in Z4 Multiplication in Z5

× [0] [1]

[0] [0] [0]

[1] [0] [1]

× [0] [1] [2]

[0] [0] [0] [0]

[1] [0] [1] [2]

[2] [0] [2] [1]

× [0] [1] [2] [3]

[0] [0] [0] [0] [0]

[1] [0] [1] [2] [3]

[2] [0] [2] [0] [2]

[3] [0] [3] [2] [1]

× [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4]

[2] [0] [2] [4] [1] [3]

[3] [0] [3] [1] [4] [2]

[4] [0] [4] [3] [2] [1]

Multiplication in Z6 Multiplication in Z7

× [0] [1] [2] [3] [4] [5]

[0] [0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4] [5]

[2] [0] [2] [4] [0] [2] [4]

[3] [0] [3] [0] [3] [0] [3]

[4] [0] [4] [2] [0] [4] [2]

[5] [0] [5] [4] [3] [2] [1]

× [0] [1] [2] [3] [4] [5] [6]

[0] [0] [0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4] [5] [6]

[2] [0] [2] [4] [6] [1] [3] [5]

[3] [0] [3] [6] [2] [5] [1] [4]

[4] [0] [4] [1] [5] [2] [6] [3]

[5] [0] [5] [3] [1] [6] [4] [2]

[6] [0] [6] [5] [4] [3] [2] [1]

Multiplication in Z8 Multiplication in Z9

× [0] [1] [2] [3] [4] [5] [6] [7]

[0] [0] [0] [0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4] [5] [6] [7]

[2] [0] [2] [4] [6] [0] [2] [4] [6]

[3] [0] [3] [6] [1] [4] [7] [2] [5]

[4] [0] [4] [0] [4] [0] [4] [0] [4]

[5] [0] [5] [2] [7] [4] [1] [6] [3]

[6] [0] [6] [4] [2] [0] [6] [4] [2]

[7] [0] [7] [6] [5] [4] [3] [2] [1]

× [0] [1] [2] [3] [4] [5] [6] [7] [8]

[0] [0] [0] [0] [0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4] [5] [6] [7] [8]

[2] [0] [2] [4] [6] [8] [1] [3] [5] [7]

[3] [0] [3] [6] [0] [3] [6] [0] [3] [6]

[4] [0] [4] [8] [3] [7] [2] [6] [1] [5]

[5] [0] [5] [1] [6] [2] [7] [3] [8] [4]

[6] [0] [6] [3] [0] [6] [3] [0] [6] [3]

[7] [0] [7] [5] [3] [1] [8] [6] [4] [2]

[8] [0] [8] [7] [6] [5] [4] [3] [2] [1]
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7. Theorem (8).
The following statements hold:

(a) For any u, v ∈ Zn, u× v = v × u.
(b) For any u, v, w ∈ Zn, (u× v)× w = u× (v × w).
(c) There exists some e ∈ Zn, namely e = [1], such that e× u = u× e = u.
(d) For any u, v, w ∈ Zn, u× (v + w) = (u× v) + (u× w) and (u+ v)× w = (u× w) + (v × w).

Proof.

(a) Let u, v ∈ Zn. There exist some k, ℓ ∈ Z such that u = [k], v = [ℓ]. We have u × v = [k] × [ℓ] = [kℓ] = [ℓk] =
[ℓ]× [k] = v × u.

(b) Let u, v, w ∈ Zn. There exist some k, ℓ,m ∈ Z such that u = [k], v = [ℓ], w = [m]. We have (u × v) × w =
([k]× [ℓ])× [m] = [kℓ]× [m] = [(kℓ)m] = [k(ℓm)] = [k]× [ℓm] = [k]× ([ℓ]× [m]) = u× (v × w).

(c) Note that [1] ∈ Zn.
Pick any u ∈ Zn. There exists some k ∈ Z such that u = [k]. We have [1]× u = [1]× [k] = [1 · k] = [k] = u and
u× [1] = [1]× u = u.

(d) Let u, v, w ∈ Zn. There exist some k, ℓ,m ∈ Z such that u = [k], v = [ℓ], w = [m].
We have u×(v+w) = [k]×([ℓ]+[m]) = [k]×[ℓ+m] = [k(ℓ+m)] = [kℓ+km] = [kℓ]+[km] = ([k]×[ℓ])+([k]×[m]) =
(u× v) + (u× w).
Also, (u+ v)× w = w × (u+ v) = (w × u) + (w × v) = (u× w) + (v × w).

Remark on terminologies.
Because of Statement (c), it is natural for us to write [1] as 1n.
By virtue of Theorem (4), Theorem (5), Theorem (7) and Theorem (8), we refer to (Zn,+,×) as a commutative
rings with unity with additive identity 0n and multiplicative identity 1n.

8. For the moment, assume n is a prime number. Write n = p.
Lemma (9).
For any x ∈ Z, if x is not divisible by p then there exists some y ∈ Z such that xy ≡ 1(mod p) and y is not divisible
by p.
Proof.
Pick any x ∈ Z. Suppose x is not divisible by p. Then gcd(x, p) = 1. By Bezôut’s Identity, there exist some y, t ∈ Z

such that yx+ tp = 1. We have xy − 1 = tp. Then xy − 1 is divisible by p. Therefore xy ≡ 1(mod p).
We verify that y is not divisible by p.

• Suppose it were true that y was divisible by p. Then there would exist some s ∈ Z such that y = sp. We would
have (sx+ t)p = yx+ tp = 1. Therefore 1 would be divisible by p. Contradiction arises.
Hence y is not divisible by p in the first place.

Theorem (10).
Let u ∈ Zp. Suppose u ̸= 0p. Then there exists some unique v ∈ Zp\{0p} such that v × u = u× v = 1p.
Proof.
Let u ∈ Zp. Suppose u ̸= 0p.
There exists some k ∈ Z such that u = [k]. Since u ̸= 0p, we have k /∈ [0]. Therefore k is not divisible by p. (Why?)
Now there exists some ℓ ∈ Z such that kℓ ≡ 1(mod p) and ℓ is not divisible by p.
Take v = [ℓ]. Since ℓ is not divisible by p, we have v ̸= 0p. We have u × v = [k] × [ℓ] = [kℓ] = [1] = 1p. Also
v × u = u× v = 1p.
Corollary (11).
Let u, v ∈ Zp. Suppose u ̸= 0p and v ̸= 0p. Then there exists some unique w ∈ Zp\{0p} such that u× w = v.
Proof.
Let u, v ∈ Zp. Suppose u ̸= 0p and v ̸= 0p.

• [Existence argument.]
There exists some ũ ∈ Zp\{0p} such that u× ũ = ũ× u = 1p.
Take w = ũ× u. We have u× w = u× (ũ× v) = (u× ũ)× v = 1p × v = v.
We verify that w ̸= 0p:
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∗ Suppose it were true that w = 0p.
There exists some k ∈ Zp such that u = [k]. Now we would have v = u× w = [k]× [0] = [k × 0] = [0] = 0p.
But v ̸= 0p. Contradiction arises.
Hence w ̸= 0p in the first place.

• [Uniqueness argument.]
Let w,w′ ∈ Zp\{0p}. Suppose u× w = v and u× w′ = v. Then u× w = u× w′.
There exist some k,m,m′ ∈ Z such that u = [k], w = [m] and w′ = [m′]. Now [km] = [k]×[m] = [k]×[m′] = [km′].
Then km ≡ km′(mod p). Therefore k(m−m′) ≡ 0(mod p). k(m−m′) is divisible by p.
Recall that u ̸= 0p. Then k is not divisible by p. By Euclid’s Lemma, m − m′ is divisible by p. Therefore
m ≡ m′(mod p). Hence w = [m] = [m′] = w′.

Remark on terminologies.
By virtue of Theorem (10), we refer to (Zp,+,×) as a field. Because Zp has only finitely many elements, (Zp,+,×)

is a finite field, in contrast to ‘infinite’ fields like (Q,+,×), (R,+,×) and (C,+,×).

9. What if n is definitely not a prime number?
Theorem (12).
Suppose n is not a prime number. Then there exist some u, v ∈ Zn\{0n} such that u× v = 0n.
Proof.
Suppose n is not a prime number. Then there exists some positive integers h, k such that 1 < h < n and 1 < k < n
and hk = n. By the definition of multiplication in Zn, we have [h] × [k] = [n] = 0n. But since 1 < h < n and
1 < k < n, we also have [h] ̸= 0n and [k] ̸= 0n.
Remark. Such elements u, v of Zn\{0n} which satisfy u× v = 0n are called zero divisors.

10. The result below holds whether n is a prime number or not.

Theorem (13).
1n + 1n + · · ·+ 1n︸ ︷︷ ︸

n times

= 0n.

Proof.
By definition, 1n + 1n + · · ·+ 1n︸ ︷︷ ︸

n times

= [1] + [1] + · · ·+ [1]︸ ︷︷ ︸
n times

= [1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

] = [n] = 0n.

Remark. We do not obtain the integer 0 by adding up many copies of the integer 1 together.
The commutative ring with unity (Zn,+,×) is some mathematical object which possesses many properties common
to (Z,+,×), (Q,+,×), but which is decisively different from them. (This is one of the starting points of MATH2070.)
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