0. This is a continuation of the Handout Integers modulo n.

We assume $n \in \mathbb{N} \setminus \{0, 1\}$ throughout this Handout.

 R_n is the equivalence relation in \mathbb{Z} with graph $E_n = \{(x, y) \mid x, y \in \mathbb{Z} \text{ and } x \equiv y \pmod{n}\}$. We call R_n the **congruence modulo** n **relation on** \mathbb{Z} .

Recall Lemma (1), Theorem (3) and terminologies associated to Theorem (3).

Lemma (1).

Let $x, y \in \mathbb{Z}$. The following statements are equivalent:

(a)
$$x - y = qn$$
 for some $q \in \mathbb{Z}$.

(d)
$$y \in [x]$$
.

(b)
$$x \equiv y \pmod{n}$$
.

(e)
$$x \in [y]$$
.

(c)
$$(x,y) \in E_n$$
.

(f)
$$[x] = [y]$$
.

Theorem (3).

The following statements hold:

(0)
$$\mathbb{Z}_n = \{[0], [1], \cdots, [n-2], [n-1]\}.$$

- (1) For any $u \in \mathbb{Z}_n$, $u \neq \emptyset$.
- (2) $\{x \in \mathbb{Z} : x \in u \text{ for some } u \in \mathbb{Z}_n\} = \mathbb{Z}.$
- (3) For any $u, v \in \mathbb{Z}_n$, exactly one of the following statements hold: (3a) u = v. (3b) $u \cap v = \emptyset$.

Remark on terminologies.

(a) \mathbb{Z} is **partitioned** into the *n* pairwise disjoint non-empty sets

$$[0], [1], ..., [n-2], [n-1].$$

We may simply refer to the set (of sets) \mathbb{Z}_n as a **partition of Z**.

(b) Because such a partition of \mathbb{Z} arises ultimately from the equivalence relation R_n , we refer to \mathbb{Z}_n as the **quotient of \mathbb{Z} by the equivalence relation** R_n .

We are going to introduce two functions, called 'addition in \mathbb{Z}_n ' and 'multiplication in \mathbb{Z}_n ' respectively.

These two functions possess properties which are analogous to usual addition and usual multiplication for integers respectively.

'Addition in \mathbb{Z}_n ' makes \mathbb{Z}_n an abelian group.

'Addition in \mathbb{Z}_n ' and 'multiplication in \mathbb{Z}_n ' together make \mathbb{Z}_n a commutative ring with unity. For certain values of n, they in fact make \mathbb{Z}_n a field.

1. **Theorem (4)**.

Define

$$G_{\alpha} = \left\{ ((u, v), w) \middle| \begin{array}{l} u, v, w \in \mathbb{Z}_n \text{ and} \\ there \text{ exist } k, \ell \in \mathbb{Z} \text{ such that } u = [k], v = [\ell] \text{ and } w = [k + \ell] \end{array} \right\}.$$

We want to define the function x: Zn > Zn through this declaration:

But is this & well-defined as a function?

I Define x: Zn > Zn by x([k], [l]) = [k+l] whenever k, leZ.

Define $\alpha = (\mathbf{Z}_n^2, \mathbf{Z}_n, G_\alpha)$.

Then α is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Proof.

Note that $G_{\alpha} \subset (\mathbb{Z}_n^2) \times \mathbb{Z}_n$. Hence α is a relation from from \mathbb{Z}_n^2 to \mathbb{Z}_n .

(E) [Is each 'input pair' 'assigned' to at least one 'output' by α ?]

[Check: For any $u, v \in \mathbb{Z}_n$, there exits some $w \in \mathbb{Z}_n$ such that $(u,v), w) \in G_a$.]

Prick any $u, v \in \mathbb{Z}_n$.

There exit some $k, l \in \mathbb{Z}$ such that u = [k] and v = [l].

For these $k, l \in \mathbb{Z}$, we have $k+l \in \mathbb{Z}$. Define w = [k+l]. We have $w \in \mathbb{Z}_n$.

By definition of G_a , we have $((u,v), w) \in G_a$.

(U) [Is each 'input pair' 'assigned' to at most one 'output' by α ?]

Theorem (4).

Define

Theorem (4).

Theorem (4).

Theorem (4).

Theorem (4).

Theorem (4).

The want to define the function
$$\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$$
 through this declaration!

The fine $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ whenever $\alpha: \mathbb{Z}_n$ by $\alpha([k], [\ell]) = [k+\ell]$ by $\alpha([k], [$

Define $\alpha = (\mathbb{Z}_n^2, \mathbb{Z}_n, G_\alpha)$.

Then α is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Proof.

Note that $G_{\alpha} \subset (\mathbb{Z}_n^2) \times \mathbb{Z}_n$. Hence α is a relation from \mathbb{Z}_n^2 to \mathbb{Z}_n .

- (E) [Is each 'input pair' 'assigned' to at least one 'output' by α ? Yes.]
- (U) [Is each 'input pair' 'assigned' to at most one 'output' by α ?]

[Check: For any u,v, W, W' \[\] , if ((u,v), W) \(\) (\) and ((u,v), W') \(\) (\) then W=W'. Pick any u, v, W, W'EZn. Suppose ((u,v), w) & God and ((u,v), w') & God. Since ((u,v), w) & Ga, there exist some k, l & Z such that u=[k], v=[l] and w=[k+l]. Since ((u,v),w') & Gra, there exist some k', l' & Z such that u=[k'], v=[l'] and w'=[k+l'] We have [k] = u = [k']. Then $k = k' \pmod{n}$ by Lemma (1). We have [l] = V = [l']. Then $l = l' \pmod{n}$ by Lemma (1). k-k',l-l' are divisible by n. Then (k+l)-(k'+l') i) also divisible by n. Therefore $k+l \equiv k'+l'$ (mod n). Hence W = [k+l] = [k'+l'] = W'.

Theorem (4).

Define

$$G_{\alpha} = \left\{ ((u, v), w) \middle| \begin{array}{l} u, v, w \in \mathbb{Z}_n \text{ and} \\ \text{there exist } k, \ell \in \mathbb{Z} \text{ such that } u = [k], v = [\ell] \text{ and } w = [k + \ell] \end{array} \right\}.$$

Define $\alpha = (\mathbb{Z}_n^2, \mathbb{Z}_n, G_\alpha)$.

Then α is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Proof.

Note that $G_{\alpha} \subset (\mathbb{Z}_n^2) \times \mathbb{Z}_n$. Hence α is a relation from \mathbb{Z}_n^2 to \mathbb{Z}_n .

- (E) [Is each 'input pair' 'assigned' to at least one 'output' by α ? Yes.]
- (U) [Is each 'input pair' 'assigned' to at most one 'output' by α ? Yes.]

It follows that α is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Remark.

The function α is called **addition in Z**_n because of its resemblance with the function 'addition' for other more familiar mathematical objects, such as numbers and matrices.

From now on, we write $\alpha(u, v)$ as u + v, and call it the sum of u, v.

By the definition of addition in
$$\mathbb{Z}_n$$
, whenever k , $l \in \mathbb{Z}$, we have $\lceil k \rceil + \lceil l \rceil = \mathcal{L}(\lceil k \rceil, \lceil l \rceil) = \lceil k + l \rceil$.

This happens in \mathbb{Z}_n .

This happens in \mathbb{Z}_n .

2. Addition table for 'small' values of n:

Addition in \mathbb{Z}_2 Addition in \mathbb{Z}_3 Addition in \mathbb{Z}_4 Addition in \mathbb{Z}_5

Addition in \mathbb{Z}_6

Addition in \mathbb{Z}_7

Addition table for 'small' values of n:

[k] + [l] = [k + l]
This happens m Zn. This happens m Z.

Addition in ${\bf Z}_8$

Addition in \mathbb{Z}_9

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
			[3]					
			[4]					
			[5]					
[4]	[4]	[5]	[6]	[7]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[0]	[1]	[2]	[3]	[4]
			[0]					
[7]	[7]	[0]	[1]	[2]	[3]	[4]	[5]	[6]

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]		[8]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]
[4]						[0]			[3]
[5]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]
[6]						[2]			[5]
[7]						[3]			[6]
[8]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]

3. **Theorem (5)**.

[k] + [l] = [k+l]
This happens in Zn. This happens in Z.

 $(\mathbb{Z}_n,+)$ is an abelian group.

Proof.

```
    [Associativity?] [Check: For any u, v, w∈ Zn, (u+v) + W = u+ (v+w).]
    Let u, v, w∈ Zn. There exist some k,l, m∈ Z such that u=[k], v=[l] and w=[m].

 Then (u+v)+W=([k]+[l])+[m]=[k+l]+[m]
                                          = [(k+l)+m] = [k+(l+m)] = ... = u+(v+w).
· [Commutativity?] [ Check: For any u, ve Zn, u+v=v+u.]
   Let u, v ∈ Ln.
   There exit some k, l & Z such that u=[k] and v=[l].
  Then u+v = [k]+[l]=[k+l]=[l+k]= ...= v+u.
• [Existence of identity element?] [Check: There exists some e ∈ Zn such that
  Define On=[0]. L for any uEZn, u+e=u=e+u.
  Pick any u \in \mathbb{Z}_n. There exists some k \in \mathbb{Z} such that u = [k].
  Then u+On=[k]+[0]=[k+0]=[k]=u. Also, On+u=...=u.o
• [Existence of inverse element?] [Check: For any u∈Zn, there exists some v∈Zn]

tet u∈Zn.

Such that u+v = On = v+u.
  There exits some ke I such that u=[k]. Note that -ke I.
 Define V=[-k]. Then u+V=[k]+[-k]=[k+(-k)]=[0]=0n. Also, v+u=...=0n.
```

It follows that $(\mathbf{Z}_n, +)$ is an abelian group.

4. Corollary (6).

For any $u, v \in \mathbb{Z}_n$, there exists some unique $w \in \mathbb{Z}_n$ such that u + w = v.

Proof.

Let $u, v \in \mathbb{Z}_n$.

• [Existence argument.]

By Theorem (5), there exitts some $t \in \mathbb{Z}_n$ such that $u + t = 0_n = t + u$. Define w = t + v. By definition, $w \in \mathbb{Z}_n$. Then $u + w = u + (t + v) = (u + t) + v = 0_n + v = v$. [Theorem (5)] [Theorem (5)]

• [Uniqueness argument.]

Let W, $W' \in \mathbb{Z} n$. Suppose u + W = V and u + W' = V. Then u + W = V = u + W'. By Theorem (5), there exists some $t \in \mathbb{Z} n$ such that u + t = 0n = t + h. W = 0n + W = (t + u) + W = t + (u + w) = t + (u + w')Theorem (5)] = 0n + w' = w'.

Remark. Here we 'subtract u from v': w is the difference of v from u, and we write w = v - u. We write $0_n - u$ as -u; it is the unique (additive) inverse of u.

5. **Theorem** (7).

Define

We want to define the function
$$\mu: \mathbb{Z}_n^2 \to \mathbb{Z}_n$$

through this declaration:
Define $\mu: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\mu(\mathbb{Z}_k) = \mathbb{Z}_k = \mathbb{Z}_k$.
But is this μ well-defined as a function?

$$G_{\mu} = \left\{ ((u, v), w) \middle| \begin{array}{l} u, v, w \in \mathbb{Z}_n \text{ and} \\ there \text{ exist } k, \ell \in \mathbb{Z} \text{ such that } u = [k], v = [\ell] \text{ and } w = [k\ell] \end{array} \right\}.$$

Define
$$\mu = (\mathbb{Z}_n^2, \mathbb{Z}_n, G_\mu)$$
.

Then μ is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Proof. Exercise. (Imitate the argument for Theorem (4).)

Remark. The function μ is called **multiplication in Z**_n because of its resemblance with the function 'multiplication' for other more familiar mathematical objects, such as numbers and matrices.

From now on, we write $\mu(u, v)$ as $u \times v$, and call it the product of u, v.

By the definition of multiplication
$$2 \mathbb{Z}_n$$
, wherever $k, l \in \mathbb{Z}$, we have $[k] \times [l] = \mu([k], [l]) = [k \times l]$ This happens $2 \mathbb{Z}_n$. This happens $2 \mathbb{Z}_n$.

6. Multiplication table for 'small' values of n:

[k] x [l] = [k.l]
This happens 12 7n. This happens 12 72.

Multiplication in \mathbb{Z}_2 Multiplication in \mathbb{Z}_3 Multiplication in \mathbb{Z}_4 Multiplication in \mathbb{Z}_5

Multiplication in \mathbb{Z}_6

[5]

[3]

Multiplication in \mathbb{Z}_7

Multiplication table for 'small' values of n:

[k] x [l] = [k.l] This happens 1-7/2. This happens 1-7/2.

Multiplication in \mathbb{Z}_8

Multiplication in \mathbb{Z}_9

×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
	ł						[0]	
							[6]	
							[4]	
[3]	[0]	[3]	[6]	[1]	[4]	[7]	[2]	[5]
[4]	[0]	[4]	[O]	[4]	[O]	[4]	[0]	[4]
[5]	[0]	[5]	[2]	[7]	[4]	[1]	[6]	[3]
							[4]	
[7]	0	[7]	[6]	[5]	[4]	[3]	[2]	[1]

×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[2]	[0]	[2]	[4]	[6]	[8]	[1]	[3]	[5]	[7]
[3]	[0]	[3]	[6]	[O]	[3]	[6]	[0]	[3]	[6]
	[0]								[5]
[5]	[0]	[5]	[1]	[6]	[2]	[7]	[3]	[8]	[4]
[6]	[0]	[6]	[3]	[O]	[6]	[3]	[0]	[6]	[3]
[7]	[0]								[2]
[8]	[0]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

7. **Theorem** (8).

The following statements hold:

- (a) For any $u, v \in \mathbb{Z}_n$, $u \times v = v \times u$.
- (b) For any $u, v, w \in \mathbb{Z}_n$, $(u \times v) \times w = u \times (v \times w)$.
- (c) There exists some $e \in \mathbb{Z}_n$, namely e = [1], such that $e \times u = u \times e = u$.
- (d) For any $u, v, w \in \mathbb{Z}_n$, $u \times (v+w) = (u \times v) + (u \times w)$ and $(u+v) \times w = (u \times w) + (v \times w)$.

Proof. Exercise. (Imitate the argument for Theorem (5).)

Remark on terminologies.

Because of Statement (c), it is natural for us to write [1] as 1_n .

 $(\mathbb{Z}_n, +, \times)$ is a **commutative rings with unity** with additive identity 0_n and multiplicative identity 1_n .

8. For the moment, assume n is a prime number. Write n = p.

Lemma (9).

For any $x \in \mathbb{Z}$, if x is not divisible by p then there exists some $y \in \mathbb{Z}$ such that $xy \equiv 1 \pmod{p}$ and y is not divisible by p.

Theorem (10).

Let $u \in \mathbb{Z}_p$. Suppose $u \neq 0_p$.

Then there exists some unique $v \in \mathbb{Z}_p \setminus \{0_p\}$ such that $v \times u = u \times v = 1_p$.

Corollary (11).

Let $u, v \in \mathbb{Z}_p$. Suppose $u \neq 0_p$ and $v \neq 0_p$.

Then there exists some unique $w \in \mathbb{Z}_p \setminus \{0_p\}$ such that $u \times w = v$.

Remarks on terminologies.

 $(\mathbb{Z}_p, +, \times)$ is a **field**.

 $(\mathbb{Z}_p, +, \times)$ is a **finite field**.

9. What if n is definitely not a prime number?

Theorem (12).

Suppose n is not a prime number.

Then there exist some $u, v \in \mathbb{Z}_n \setminus \{0_n\}$ such that $u \times v = 0_n$.

Remark.

Such elements u, v of $\mathbb{Z}_n \setminus \{0_n\}$ which satisfy $u \times v = 0_n$ are called **zero divisors**.

10. The result below holds whether n is a prime number or not.

Theorem (13).

$$\underbrace{1_n + 1_n + \dots + 1_n}_{n \text{ times}} = 0_n.$$

Proof.

By definition,
$$\underbrace{1_n + 1_n + \dots + 1_n}_{n \text{ times}} = \underbrace{[1] + [1] + \dots + [1]}_{n \text{ times}} = \underbrace{[1 + 1 + \dots + 1]}_{n \text{ times}} = [n] = 0_n.$$

Remark.

We do not obtain the integer 0 by adding up many copies of the integer 1 together.

The commutative ring with unity $(\mathbb{Z}_n, +, \times)$ is some mathematical object which possesses many properties common to $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, but which is **decisively different** from them. (This is one of the starting points of MATH2070.)