0. This is a continuation of the Handout Integers modulo n.
We assume n € N\{0, 1} throughout this Handout.

R,, is the equivalence relation in Z with graph E, = {(z,y) | z,y € Z and x = y(mod n)}.
We call R, the congruence modulo n relation on Z.

Recall Lemma (1), Theorem (3) and terminologies associated to Theorem (3).

Lemma (1).

Let x,y € Z. The following statements are equivalent:

(a) x —y =qn for some q € Z. (d) vy ezl
(b)  z=y(modn). (e) x €yl
(¢)  (,y) € En. (f) =] =ly]

Theorem (3).

The fO]]Ong statements hold.:

(1) FOr any u € Z,, u # 0.

2){x € Z:x €uforsomeuecZ,} =1Z.
(3)

3) For any u,v € Z,, exactly one of the following statements hold:
(3a)u—v (3b) unwv=10.



Remark on terminologies.
(a) Z is partitioned into the n pairwise disjoint non-empty sets
We may simply refer to the set (of sets) Z,, as a partition of Z.

(b) Because such a partition of Z arises ultimately from the equivalence relation R,,, we refer
to Z,, as the quotient of Z by the equivalence relation R,.

We are going to introduce two functions, called ‘addition in Z,,;’ and ‘multiplication in Z,,’
respectively.

These two functions possess properties which are analogous to usual addition and usual
multiplication for integers respectively.

‘Addition in Z,’ makes Z,, an abelian group.

‘Addition in Z,,” and ‘multiplication in Z,,” together maks Z,, a commutative ring with unity:.
For certain values of n, they in fact make Z,, a field.
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1. Theorem (4).
Define

G, - {<<u,v>,w>

Define o = (Z,,°, Z,,, G.,,).
Then « is a function from Z,,*> to Z,,.
Proof.

Note that G, C (an) x Z,. Hence « is a relation from from Z,° to Z,,.
(E) [Is each ‘input pair’ ‘assigned’ to at least one ‘output’ by a7

[Check » For oy v Ve, the oxis some W, s thek (), 0) e, ]

u,v,w € £, and
there exist k, ¢ € Z such that uw = [k],v = [¢] and w = [k + /] |~

e ark Sme | & Uo7 geel S W E el ) 1)
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(U) [Is each ‘input pair’ ‘assigned’ to at most one ‘output’ by o]

o
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Theorem (4).
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Define
Gaz{((u,v),w) u,v,wglnand }
there exist k, ¢ € Z such that u = |k],v = [¢] and w = [k + /]
Define a = (Z,%, Z,,, G.).
Then « is a function from Z,° to Z,,.
Proof.
Note that G, C (an) x Z,. Hence « is a relation from from Z,° to Z,,.

(E) [Is each ‘input pair’ ‘assigned’ to at least one ‘output’ by a? Yes.]
(U) [Is each ‘input pair’ ‘assigned’ to at most one ‘output’ by o]
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Theorem (4).
Define

6 ={ ()0

Define oo = (Zn2, Z, G,).
Then « is a function from Z,° to Z,,.

Proof.
Note that G, C (ZnQ) x Z,. Hence « is a relation from from Z,° to Z,,.

u,v,w € 4, and
there exist k, ¢ € Z such that u = |k],v =[f] andw =k +{] |~

(E) [Is each ‘input pair’ ‘assigned’ to at least one ‘output’ by a? Yes.]
(U) [Is each ‘input pair’ ‘assigned’ to at most one ‘output’ by a? Yes.]

It follows that « is a function from Z,,* to Z,,.

Remark.

The function « is called addition in Z,, because of its resemblance with the function
‘addition’ for other more familiar mathematical objects, such as numbers and matrices.

From now on, we write a(u, v) as u + v, and call it the sum of u, v.
B, the dfitin g sation n Lo
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Addition in Z4

B,

2. Addition table for ‘small’ values of n:

1
2
3

1]
2]

2] 13] 4]
2] 13[4

1

2 3] [4 0

0] [1]
0

1]

Addition in Z5
1
1

_|_

1

2121 3] 4] [0
3113 [4] 10

4114 [0]

2] 3] (0]

1

1

2] 21 3] [0]

31113 [0]

0

21112 [0]

0

Addition in Z, Addition in Z5
_i_

Addition in Z-

Addition in Zg

1]
2
3

1]
2]

2] 3] 4]

1

20 3] 14 15

1]

2] 3] [4] [5] [6]
2] [3] [4] [5] 6]

1]

1
1

2] 3] 14 [ [6] [0]

0
0
1

2} 2] 3] 4] [5] [6] [0]
3] 113 4] 15] (6] [0
4114 5] 16] [0

511 [5] (6] 10

6}1[6] [0]

_|_

1]
2

1

2] 13 4]

2] 3] 14 [5]
20 3] 14 15

1

1]
1]

2] 131 14 [3] [0]

0
0
1

+
0
1

2121 (3] 4] 5] 0
3131 14 5] 0

4] 14 B [0
511 B] [0]
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Addition table for ‘small’ values of n:

Addition in Z4

Addition in Zg

1
2
3

1]
2

1]

2] [3] 4

1]

2] 3] [4] [5]

2] [3] 4] [5] [6]

1]

1]

2 3] 14 5] [6] [7

2] 3] 14 [5] [6] [7] 8
2 3] 14 5] (6] [7] [8

1]

1]
1]

2] 3] [4] 3] (6] [7) 8] [0

0)
0)
1]

2} 21 3] [4] 5] (6] [7] [8) 0]

31113 [4] 18] 16) [7] (8] [0
4114 Bl (6] 7] (8] [0
5] 9] (6] [7] (8] 0]

6} 16] [7] 8] [0]

UnuRtin
8]1 18] [0

+

1]

1]

1]
2

1]

2] 3] 14

1]

2] [3] [4]

1]

2] 131 [4] 5] [6]

2] [3] [4] 5] [6] [7
2] [3] 4] [5] [6] [7

1]

1]
1]

2] 3] 14 5] (6] [7] [0

0
0
u

_|_
0
u

221 3] 4] 3] [o] [7] (o
311181 14 5] (6] [7] [0
A1 14] 5] (6] [7] 0

Sl 1] 7] [0]
6} (6] [7] 10

71117 o




3. Theorem (5). [L] + {'Qj E \ﬁ + X ]

L. v‘i"-TJ N bl ¥ _",.:‘, :
(Z,,,+) is an abelian group. Tho l\‘”’1’1’9’*’ PA s

Proof

o [A ty7] | Check : Fov on wwgz QAT W s e (). ]
[L;i()citl\\/n»}je?} “There e)n"f)(jmme/ LA me] Such thak wdk] v=[2] ondk W= =fm ]

Ther. (utV)+W = (TEI4TLD)4Dn] = T+ AI)
= [kl DemT= [kt =ut(v1)

e [Commutativity?] EMAU/LK T an o~y Vel , WiV = \/+n~]
ez %/Vez“' 07 Sud ek wlkTond V=127,

"’T"'\e\ uk,+\/:&\1*[1 [ ] [Q'J“ = NS S
e [Existence of identity element?] | Oleck : Thoe exiKs some. €€/, sud tlak ]

a

Deiﬁ\f\@/ Ov=1071. ‘Ewom wWe€Z. wre s w=etrwu,
?\QL aAj MQZW Tl\w/ U;QS S he] Skd\ .@L;(' W= f ]
Thon uFOn= [k1+L03=Tk+0l=fkl=uw, Alo, Ontu=--- = w.,

e [Fixistence of inverse element?| LCJ\?,(\JL For iy e QZK ‘there Q/x\‘h sme e/
ta( \AQZW. S“ffl\ ‘bLD( \/\‘\‘\/ "Ow: V&t |
"/\&&/ @,&7{3 Some KE L JLJ/L‘('/‘\OK W= [ L] NBQQ ‘d\ﬂ( -ke

DFme v=I-k]. Tho W+V= [ E7+0-k) = Thecil=[0] =0, Also, vru=... = ..
[t follows that (Z,,+) is an abelian group.



4. Corollary (6).
For any u,v € Z,, there exists some unique w € 4Z,, such that v+ w = v.

Proof.
Let u,v € Z,,.

e [Existence argument.]
Bj Thea(5) thet exltis gome teZ_K el d\cx wil =0, = t4w.
Defne W = TV By defotio~, we, .

Then wtwr = ur Ety) (Wit +v 2 Ot vz V. o
[theotn )] Cthent 6V} Tthonem(s)]

e |[Uniqueness argument. |

[ZK W, WL/ Swg[?w@ wutW=V ard wutw' =y
—Ther u+r W= V= utw’,

Bj 7/)65)1‘%»(5)/ thore Oxs Sme tef, Sl dok wrt=0_=T+u
wlov:k\»\) ‘fr‘; (t+w)+\W ;f T+ (w+t W)= t-f(b\.'l‘\J’)

- » =t rwte
[Frhen e (5)] ‘ = On+ W = W |
Remark.  Here we ‘subtract v from v’: w is the difference of v from wu, and we write

w = v — u. We write 0,, — u as —u; it is the unique (additive) inverse of wu.
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Define .
O (( > ) U, v, W € Zn and
p = WU, W there exist k, ¢ € Z such that v = |k|,v = [¢| and w = [kl] |

Define u = (Z,°, Z,,, G,,).

Then p is a function from Z,,* to Z,,

5. Theorem (7).

o S -

Proof.  Exercise. (Imitate the argument for Theorem (4).)

Remark. The function p is called multiplication in Z, because of its resemblance
with the function ‘multiplication’ for other more familiar mathematical objects, such as
numbers and matrices.

From now on, we write pu(u,v) as u X v, and call it the product of u, v.

?}7 ‘i‘jv& vké’/d"\hﬁ'; O f/) mk(i?\(cdﬁ.m N ZA )
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Multiplication in Z, Multiplication in Zs Multiplication in Z4

6. Multiplication table for ‘small’ values of n:

Multiplication in Zs;

3
2
1]

1]
4

2] 13 [4]

2] 13[4

1

1

1

0)

0)

X

0}} [0} [0} [o] [o] [0]

210 [2 4

31110} 13

4110] [4] 3] 2

0} [o] [o] [0] [0

21[0] [2] 0] 2
311101 [3] [2]

0} [0] 0] [0

21110} 2

Multiplication in Z;

Multiplication in Zg

)
4

1]

3
1]

6] 4] [2

1

o 2] (6] 13

1

2] [3] [4] 5] 6

2] [3] [4] [5] 6]

1]

1

1

0

O} [o] [0 {o] [0} [o] [o] [0

211 10] [2] 4] [6]

3] 0] (3] 6] 2] I3

4] 1[0] 4]

5] 0] [3] [3]

6] [0] [6] [5] [4) 3] [2]

2] 3] 14 [5]

2] 3] 14 [5]

1]

1]

0

0)

X

O} [0] [0 [0] [0} [o] [0]

21 (0] [2] [4] (0] [2] [4]
3] (0] (3] [0 (3] [0] [3]
4)1[0] (4] 2 (o) [4] [21
S110] [5] [4] (3] 2
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Multiplication table for ‘small’ values of n:

Multiplication in Zg

)

1]

1]

3] 1] [7]

1]

3] [0 [4] [2

1]

6] 2] [7] 3] 18] 14

2] [3] [4] 5] [6] [7] [8]

2] [3] [4] 5] (6] [7] [8]

1]

1]

1]

0

0

X

0} [0] [o] [o] [0 [0 [0] [0} [0} 0]

2} (0] [2] 4] (6] 8

3] 101 [3] [6] [0] 3] [6] (0] (3] [6]
41 1[0] [4] 8] 3] [7] [2] 6

511 [0] [5]

6} [0] [6] 3] [0} [6] [3] [0] [6] 3]

7o) 7] 18] 13

SJ10] 8] [7] (6] [5] [4] 3] [2

1]

1]

6]

1]

4] 17 2] 5]

1]

2] 3] [4] 5] [6] |7

2] 3] [4] 5] [6] |7

1

1

0)

0)

X

O} (o] [0 [0] [o] {o} [o] [o] [0

2} (0] [2] 4] [6] [0} [2] [4] |6

3] 101 3] [6]

4] (0] [4] [0 [4] [0} [4] [0] 4

510 [5] [2 [7] 14

6]} [0} [6] [4] [2] [0 [6] [4] [2

7o) 7] [6] 5] 14) [3] [2]




7. Theorem (8).
The following statements hold:

(a) For any u,v € Z,, u X v =v X u.

(b) For any u,v,w € Z,, (u X v) X w =u X (v X W),

(¢) There exists some e € Z,,, namely e = [1], such that e X u = u X e = u.

(d) For any w,v,w € Z,, ux (v+w) = (uxXv)+(uxw) and (u+v) X w = (u X w)+(vXw).

Proof.  Exercise. (Imitate the argument for Theorem (5).)

Remark on terminologies.
Because of Statement (c), it is natural for us to write [1] as 1,,.

(Z,,+, x) is a commutative rings with unity with additive identity 0, and multi-
plicative identity 1,,.



8. For the moment, assume n is a prime number. Write n = p.

Lemma (9).

For any x € Z, it x is not divisible by p then there exists some y € Z such that xy =
1(mod p) and y is not divisible by p.

Theorem (10).
Let w € Z,. Suppose u # 0,,.

Then there exists some unique v € Z,\{0,} such that v x u=u X v = 1,,.

Corollary (11).
Let u,v € Z,. Suppose u # 0, and v # 0.

Then there exists some unique w € Z,\{0,} such that u x w = v.

Remarks on terminologies.
(Z,,+, x) is a field.
(Z,,+, x) is a finite field .




9.

10.

What it n is definitely not a prime number?

Theorem (12).

Suppose n is not a prime number.

Then there exist some u,v € Z,\{0,} such that u x v = 0.

Remark.

Such elements u, v of Z,,\{0,} which satisfy u x v = 0,, are called zero divisors.

The result below holds whether n is a prime number or not.

Theorem (13).
L+l 4 +1,=0,

n  times

Proof.
By definition, 1, + 1, +---+ 1, = 1]+ 1]+ -+ [I] =1+ 14 -+ 1] = [n] =0,
Remark.

We do not obtain the integer 0 by adding up many copies of the integer 1 together.

The commutative ring with unity (Z,, +, X) is some mathematical object which possesses
many properties common to (Z, +, x), (R, +, x), but which is decisively different from
them. (This is one of the starting points of MATH2070.)





