1. We assume n € N\{0, 1} throughout this Handout.

Definitions.

(a) Suppose x,y € Z. Then we say x is congruent to y modulo n if x — y is divisible

by n.

We write x = y(mod n).

(b) Define E, = {(z,y) | v,y € Z and x = y(mod n)}, and R, = (Z,Z, E,,).
We call R,, the congruence modulo n relation on Z.

Remark. R, is an equivalence relation in Z.
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Definitions.

(a) For any x € Z, define x| ={y € Z : (x,y) € E,}.
The set |x] is called the equivalence class of x under the equivalence relation
R,.

(b) Define Z,, = {|x| | v € Z}.
We call Z,, the quotient of the set Z by equivalence relation R,,.

Remark.

This ‘school-and-classes’ analogy’ is intended to help us see the intuitive idea about the
definitions above.

Read:
e ‘Integer x’ as ‘student x’,
* ‘the set of all integers Z’ as
‘the school Z (whose elements are exactly all the students of the school)’,
« (x,y) € B, (or equivalently ‘z = y(mod n)’) as

‘student x is in the same class as student '



2. Lemma (1).

Let x,y € Z. The following statements are equivalent:

(a) x —y =qn for some q € Z. (d)  y ez
(b)  x = y(mod n). (e) x €y
(¢)  (z,y) € En. (F) =] =ly]

Proof.  Exercise. (This is nothing but a tedious game of words.)

Remark.

How to interpret Lemma (1) in terms of the ‘school-and-classes” analogy’?

Recall that ‘(z,y) € E, is read as ‘student x is in the same class as student y’. Now:
e ‘y € |x| reads:

Stk B e Q@*\ﬁ o the s 0’3 M darnides /3 Rudek x
e ‘x € [y] reads

Studek ¥ B 0w emet N/\\S the 72N yd oM oraimetes d&-/ 33-()1«»(@:&“7 !

o ‘[z] = [y reads:

“The ko sl damusher o Sholek x b e Some o tleset o Ml chminskes Tty

Each of these is the same as ‘z is in the same class as v’



Lemma (2).
For any x € Z, there exists some unique r € [[0,n — 1] such that [x] = |r].
Proof.

letx € Z.

e [Existence _argument.] e [Uniqueness argument?]
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Remark.

How to interpret Lemma (2) in terms of the ‘school-and-classes’ analogy’?
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3. Theorem (3).

The following statements hold:

0) Z, = {[0, [1],--- ;|[n =2, [n —1]}.
1) Foranyu e, u#0.

2Q){r e Z :x cuforsomeuec,} =12
)

3) For any u,v € Z,, exactly one of the following statements hold:
(Ba)U—v (3b) unwv=1.

(
(
(
(

Remark.

How to interpret Theorem (3) in terms of the ‘school-and-classes” analogy’?

(0) The classes [0], [1], - ,[n — 1] are Q/xu?['(j (,\M e, (;‘,(M@«ff/.ﬁ W the telod. \Z ‘
(1) In every class in the school, “here S ok (M ane  hudet |
(2) Lunch break; all classes dismissed. Bk Wj sdex s still someuhere the sohal Compls,

(3) Any two copies of ‘class namelists’ in the school are pither idedieal " ov (‘fﬁt% oﬁiﬁ'mﬁ )



Theorem (3).

The following statements hold:

0)Z, = {[0], [, [ — 2], [n — 1.

1) For any u € Z,, u # ).

2){x e Z:x € forsomeu € Z,} =Z.

3) For any u,v € Z,, exactly one of the following statements hold:
(Sa)U—v (3b) unwv=70.

Proof.
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(0) Pick cZ,
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1) Pick cZ,
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(2) Write U = {z € Z : = € u for some v € Z,}. By definition, we have U C Z.
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Theorem (3).
The following statements hold:

(0 Z, = {01 1)+ [ — 2 [n 1) TR
(1)Foranyu€ln,u#@ ¢S
(2){x € Z:x € u forsomeu € Z,} =Z. H;LF T ®
(3) For any u,v € Z,, exactly one of the following statements hold: ¢ F]T| F @
(Sa)u—v (3b) unNw =10. f FIFIT I F
H K. (' L
Proof. ‘:

~ (3) Pick any u,v € Z,. [um&o Jefuce ? =R - H] 1 e wkf? Ttk tble 71
(A) Suppose u = v.
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(B) Suppose u Nwv # (. |
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Theorem (3).

The following statements hold:

(0) Z, =A{[0), [1), -+, [n = 2], [n — 1]}
(1) For any u € Z,, u # ).

2){re€Z :xcuforsomeucl,} =12
(3)

3) For any u,v € Z,, exactly one of the following statements hold:
Ba)u=wv. (Bb)unv=0>0.

Remark on terminologies.

(a) Z is partitioned into the n pairwise disjoint non-empty sets [0], [1], ..., [n — 2], [n — 1].
We may simply refer to the set (of sets) Z,, as a partition of Z.

(b) Because such a partition of Z arises ultimately from the equivalence relation R,,, we refer
to Z,, as the quotient of Z by the equivalence relation R,,.

You will encounter more of these ideas and terminologies (and ‘natural consequences’ of
these ideas, such as the rest of the Handout Arithmetic in Integers modulo n) in advanced
courses (for example, algebra and topology).





