- 1. Prove the statement (\sharp) :
 - (\sharp) Let A, B, C be sets and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. For any subset S of A, $(g \circ f)(S) = g(f(S))$.
- 2. (a) Prove the statement (\sharp) :
 - (#) Let A, B be sets, and $f: A \longrightarrow B$ be a function. For any subsets U, V of B, if $U \subset V$ then $f^{-1}(U) \subset f^{-1}(V)$.
 - (b) Dis-prove the statement (b):
 - (b) Let A, B be sets, and $f : A \longrightarrow B$ be a function. For any subsets U, V of B, if $f^{-1}(U) \subset f^{-1}(V)$ then $U \subset V$.
 - (c) You may apply the result obtained in the first part of this question to help simplify your arguments in this part. Prove the statements below:

i. Let A, B be sets, and $f: A \longrightarrow B$ be a function. For any subsets U, V of B, $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$. ii. Let A, B be sets, and $f: A \longrightarrow B$ be a function. For any subsets U, V of B, $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$.

- 3. (a) Prove the statement (\sharp) :
 - (#) Let A, B be sets, and $f: A \longrightarrow B$ be a function. For any subsets S, T of A, $f(S \cap T) \subset f(S) \cap f(T)$.
 - (b) Dis-prove the statement (b):
 - (b) Let A, B be sets, and $f: A \longrightarrow B$ be a function. For any subsets S, T of A, $f(S) \cap f(T) \subset f(S \cap T)$.
 - (c) i. Let A, B be sets, and $f : A \longrightarrow B$ be a function. Suppose that for any subsets S, T of $A, f(S) \cap f(T) \subset f(S \cap T)$. Then f is injective.
 - ii. Let A, B be sets, and $f : A \longrightarrow B$ be a function. Suppose f is injective. Then for any subsets S, T of A, $f(S) \cap f(T) \subset f(S \cap T)$.
- 4. (a) Prove the statement (\sharp) :
 - (#) Let A, B be sets, and $f: A \longrightarrow B$ be a function. For any subset S of A, $S \subset f^{-1}(f(S))$.
 - (b) Dis-prove the statement (b):
 - (b) Let A, B be sets, and $f: A \longrightarrow B$ be a function. For any subset S of A, $f^{-1}(f(S)) \subset S$.
 - (c) i. Let A, B be sets, and $f : A \longrightarrow B$ be a function. Suppose that for any subset S of A, $f^{-1}(f(S)) \subset S$. Then f is injective.
 - ii. Let A, B be sets, and $f : A \longrightarrow B$ be a function. Suppose f is injective. Then for any subset S of A, $f^{-1}(f(S)) \subset S$.
- 5. You may apply results already established in the lectures or in other exercises to help simplify the argument here. Let A, B be sets, and $f: A \longrightarrow B$ be a function. Prove the following statements:
 - (a) $f(S) = f(f^{-1}(f(S)))$ for any subset S of A.
 - (b) $f^{-1}(U) = f^{-1}(f(f^{-1}(U)))$ for any subset U of B.
- 6. Prove the statement (\sharp) :
 - (#) Let A, B be sets, and $f: A \longrightarrow B$ be a function. For any subset S of A, for any subset U of B, $f(S \cap f^{-1}(U)) = f(S) \cap U$.
- 7. We introduce the definitions and notations below:

Let A, B be sets and $f : A \longrightarrow B$ be a function. f induces the pair of functions $f_{\mathfrak{P}} : \mathfrak{P}(A) \longrightarrow \mathfrak{P}(B), f^{\mathfrak{P}} : \mathfrak{P}(B) \longrightarrow \mathfrak{P}(A)$, given by $f_{\mathfrak{P}}(S) = f(S)$ for any $S \in \mathfrak{P}(A), f^{\mathfrak{P}}(U) = f^{-1}(U)$ for any $U \in \mathfrak{P}(B)$ respectively.

- (a) Let $f: A \longrightarrow B$, $g: A \longrightarrow B$ be functions. Prove that the statements (A), (B), (C) are logically equivalent:
 - (A) f = g.
 - (B) $f_{\mathfrak{P}} = g_{\mathfrak{P}}.$

(C) $f^{\mathfrak{P}} = g^{\mathfrak{P}}.$

- (b) Let $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. Prove the statements below:
 - $\mathrm{i.} \quad (g\circ f)_{\mathfrak{P}}=g_{\mathfrak{P}}\circ f_{\mathfrak{P}}.$
 - ii. $(q \circ f)^{\mathfrak{P}} = f^{\mathfrak{P}} \circ g^{\mathfrak{P}}.$
- (c) Let $f: A \longrightarrow B$ be a function. Prove that the statements (D), (E), (F) are logically equivalent:
 - (D) f is injective.
 - (E) $f_{\mathfrak{P}}$ is injective.
 - (F) $f^{\mathfrak{P}}$ is surjective.
- 8. Let A, B be sets, and $f, g : A \longrightarrow B$ be functions, with graphs F, G respectively. Prove that the statements $(\dagger), (\ddagger)$ are equivalent to each other:
 - (†) f(x) = g(x) for any $x \in A$.

 $(\ddagger) \quad F = G.$

Remark. What is the point of this question? We have introduced two notions of 'equality of functions': equality of functions as ordered triples, and equality of functions as 'assignments from A to B'. Are they in conflict? By virtue of the equivalence of the statements (\dagger), (\ddagger), these two notions of 'equality of functions' are consistent.

- 9. Prove the statements below:
 - (a) Let A, B be sets, and $f: A \longrightarrow B, g: B \longrightarrow A, h: B \longrightarrow A$ be functions. Suppose $g \circ f = id_A$ and $f \circ h = id_B$. Then f is bijective, and $f^{-1} = g = h$.
 - (b) Let A, B be sets, and $f: A \longrightarrow B$ be a bijective function. $(f^{-1})^{-1} = f$.
 - (c) Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be bijective functions. $g \circ f$ is a bijective function and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 10. (a) Prove the statements below:
 - i. Let A, B be non-empty sets, and $f : A \longrightarrow B$ be a function. Suppose there exists some function $g : B \longrightarrow A$ such that $g \circ f = id_A$. Then f is injective.
 - ii. Let A, B be non-empty sets, and $f : A \longrightarrow B$ be a function. Suppose f is injective. Then there exists some function $g : B \longrightarrow A$ such that $g \circ f = id_A$.

Remark. To write down a simple argument, we need the notion of bijective function.

- (b) Prove the statements below:
 - i. Let A, B be non-empty sets, and $f : A \longrightarrow B$ be a function. Suppose there exists some function $g : B \longrightarrow A$ such that $f \circ g = id_B$. Then f is surjective.
 - ii. Let A, B be non-empty sets, and $f : A \longrightarrow B$ be a function. Suppose f is surjective. Then there exists some function $g : B \longrightarrow A$ such that $f \circ g = id_B$.

Remark. Re-read your argument after finishing it. Do you believe you have indeed proved anything?

- (c) Dis-prove the statements below:
 - i. Let A, B be non-empty sets, and $f : A \longrightarrow B$ be a function. Suppose there exists some function $g : B \longrightarrow A$ such that $g \circ f = id_A$. Then f is surjective.
 - ii. Let A, B be non-empty sets, and $f : A \longrightarrow B$ be a function. Suppose there exists some function $g : B \longrightarrow A$ such that $f \circ g = id_B$. Then f is injective.
- 11. Dis-prove each of the statements below.
 - (a) Let A, B be non-empty sets, and $f : A \longrightarrow B$ be a function. Suppose f is injective. Then there exists some function $g : B \longrightarrow A$ such that $f \circ g = id_B$.
 - (b) Let A, B be non-empty sets, and $f : A \longrightarrow B$ be a function. Suppose f is surjective. Then there exists some function $g : B \longrightarrow A$ such that $g \circ f = id_A$.
 - (c) Let A be a non-empty set, and $f: A \longrightarrow A$ be a function. Suppose there exists some function $g: A \longrightarrow A$ such that $g \circ f = id_A$. Then f is surjective.
 - (d) Let A be a non-empty set, and $f : A \longrightarrow A$ be a function. Suppose there exists some function $g : A \longrightarrow A$ such that $f \circ g = id_A$. Then f is injective.

- (e) Let A be a non-empty set, and $f : A \longrightarrow A$ be a function. Suppose f is injective. Then there exists some function $g : A \longrightarrow A$ such that $f \circ g = id_A$.
- (f) Let A be non-empty set, and $f : A \longrightarrow A$ be a function. Suppose f is surjective. Then there exists some function $g : A \longrightarrow A$ such that $g \circ f = id_A$.
- 12. Let A, B, F be sets. Suppose f = (A, B, F) is a function. Define $\hat{f} = (A, f(A), F)$. Prove the statements below:
 - (a) $F \subset A \times f(A)$.
 - (b) \hat{f} is a surjective function.
 - (c) Suppose f is injective, and suppose $H = \{(f(y), y) \mid y \in A\}$. Then \hat{f} is a bijective function, with the inverse function of \hat{f} being given by (f(A), A, H).
- 13. We introduce/recall some definitions:
 - Let A, B be sets, and $g : A \longrightarrow B$ be a function. Suppose C is a subset of A. The function $g|_C : C \longrightarrow B$ defined by $g|_C(x) = g(x)$ for any $x \in A$ is called the **restriction of** g to C.
 - Let A, B be sets. The function $\pi_A : A \times B \longrightarrow A$ defined by $\pi_A(x, y) = x$ for any $x \in A$, $y \in B$ is called the **projection function from** $A \times B$ to A. The function $\pi_B : A \times B \longrightarrow B$ defined by $\pi_B(x, y) = y$ for any $x \in A$, $y \in B$ is called the **projection function from** $A \times B$ to B.

Let f = (A, B, G) be a relation. Consider the respective projection functions $\pi_A : A \times B \longrightarrow A$, $\pi_B : A \times B \longrightarrow B$, and the respective restrictions $\pi_A|_G : G \longrightarrow A$, $\pi_B|_G : G \longrightarrow B$.

- (a) Prove the statement (\sharp) :
 - (\sharp) The relation f is a function iff the function $\pi_A|_G$ is bijective.
- (b) Now suppose the relation f is a function. Prove the statements below:
 - i. $\pi_B|_G = f \circ \pi_A|_G$.
 - ii. The function f is surjective iff the function $\pi_B|_G$ is surjective.
 - iii. The function f is injective iff the function $\pi_B|_G$ is injective.
 - iv. The function f is bijective iff the function $\pi_B|_G$ is bijective.
- 14. We introduce the notation below:

Let D, R be sets. The set of all functions from D to R is denoted by Map(D, R).

- (a) Prove the statements below:
 - i. Let B be a set. The set $Map(\emptyset, B)$ is a singleton.
 - ii. Let A, B be sets. Suppose A, B are non-empty. Then Map(A, B) is non-empty.
 - iii. Let A, B be sets. Suppose A is non-empty. Then $Map(A, \emptyset) = \emptyset$.
- (b) Let A, B be non-empty sets, and $f: A \longrightarrow B$ be a function. Prove that the statements $(\dagger_1), (\ddagger_1)$ are equivalent:
 - (\dagger_1) f is surjective.
 - (\ddagger_1) For any non-empty set C, for any $\varphi, \psi \in \mathsf{Map}(B, C)$, (if $\varphi \circ f = \psi \circ f$ then $\varphi = \psi$).
- (c) Let A, B be non-empty sets, and $f: A \longrightarrow B$ be a function. Prove that the statements $(\dagger_2), (\ddagger_2)$ are equivalent: $(\dagger_2) f$ is injective.
 - (‡) For any non-empty set C, for any $\varphi, \psi \in \mathsf{Map}(C, A)$, (if $f \circ \varphi = f \circ \psi$ then $\varphi = \psi$).
- (d) Let A, B be non-empty sets, and $f : A \longrightarrow B$ be a function. Prove that the statements $(\dagger_3), (\ddagger_3)$ are equivalent: $(\dagger_3) f$ is surjective.
 - (\ddagger_3) For any non-empty set C, for any $\psi \in \mathsf{Map}(C, B)$, there exists some $\varphi \in \mathsf{Map}(C, A)$ such that $f \circ \varphi = \psi$.
- (e) Let A, B be non-empty sets, and $f: A \longrightarrow B$ be a function. Prove that the statements $(\dagger_4), (\ddagger_4)$ are equivalent: $(\dagger_4) f$ is injective.
 - (‡4) For any non-empty set C, for any $\varphi \in \mathsf{Map}(A, C)$, there exists some $\psi \in \mathsf{Map}(B, C)$ such that $\psi \circ f = \varphi$.