- 1. (a) Let $F = \{(x, y) \mid y^3 = x^2 + 1 \text{ and } x \in \mathbb{R} \text{ and } y \in \mathbb{R}\}$. (Note that $F \subset \mathbb{R}^2$.) Verify that $(\mathbb{R}, \mathbb{R}, F)$ is a function.
 - (b) Let $A = (0, +\infty)$, and $F = \{(x, y) \mid x^2y = 1 \text{ and } x \in A \text{ and } y \in A\}$. (Note that $F \subset A^2$.) Verify that (A, A, F) is a function.
 - (c) Let A₁ = [0, +∞), A₂ = (-∞, 0), F₁ = {(x, y) | y = x² and x ∈ A₁ and y ∈ ℝ}, F₂ = {(x, y) | y = x+1 and x ∈ A₂ and y ∈ ℝ}, and F = F₁ ∪ F₂. (You can take for granted that F ⊂ ℝ².)
 Verify that (ℝ, ℝ, F) is a function.
 Remark. Such is an example of 'piecewise-defined functions' in school mathematics.
- 2. (a) Let $G = \{(x, y) \mid |y| = |x| \text{ and } x \in \mathbb{R} \text{ and } y \in \mathbb{R}\}$. Is $(\mathbb{R}, \mathbb{R}, G)$ a function? Justify your answer.
 - (b) Let $H = \{(x, y) \mid y^2 = x \text{ and } x \in \mathbb{N} \text{ and } y \in \mathbb{N}\}$. Is $(\mathbb{N}, \mathbb{N}, H)$ a function? Justify your answer.
 - (c) Let $G = \{(\sqrt{t^2}, \cos(t)) \mid t \in \mathbb{R}\}$. Is $(\mathbb{R}, \mathbb{R}, G)$ a function? Justify your answer.
 - (d) Let $H = \{(s^2, s) \mid s \in \mathbb{R}\} \cup \{(t, 0) \mid t \in \mathbb{R} \text{ and } t < 0\}$. Is $(\mathbb{R}, \mathbb{R}, H)$ a function? Justify your answer.
- 3. In this question, 0, 1, 2 are regarded as pairwise distinct objects.
 - (a) Let $A = \{0, 1, 2\}$, $B = \{0, 1, 2\}$, and $F = \{(0, 1), (1, 2), (2, 1)\}$. Note that $F \subset A \times B$. Is (A, B, F) a function? Justify your answer.
 - (b) Let $A = \{0, 1\}$, $B = \{0, 1, 2\}$, and $F = \{(0, 1), (0, 2), (1, 0)\}$. Note that $F \subset A \times B$. Is (A, B, F) a function? Justify your answer.
 - (c) Let $A = \{0, 1, 2\}$, $B = \{0, 1, 2\}$, and $F = \{(0, 0), (1, 2)\}$. Note that $F \subset A \times B$. Is (A, B, F) a function? Justify your answer.
- 4. (a) Let A = [0, 1], B = [0, 2], and $F = \{(x, y) \mid x \in A \text{ and } y \in B \text{ and } 4x^2 + y^2 = 4\}$. Note that $F \subset A \times B$. Define f = (A, B, F). Verify that f is a function.
 - (b) Let A = [0, 1], B = [0, 1], and $F = \{(x, y) \mid x \in A \text{ and } y \in B \text{ and } 4x^2 + y^2 = 4\}$. Note that $F \subset A \times B$. Define f = (A, B, F). Is f a function? Justify your answer.
 - (c) Let A = [0, 1], B = [-1, 2], and $F = \{(x, y) \mid x \in A \text{ and } y \in B \text{ and } 4x^2 + y^2 = 4\}$. Note that $F \subset A \times B$. Define f = (A, B, F). Is f a function? Justify your answer.
- 5. (a) Let A = [0,3], B = [0,2], and $F = \{(x,y) \mid x \in A \text{ and } y \in B \text{ and } 4x^2 + 9y^2 = 36\}$. Note that $F \subset A \times B$. Define f = (A, B, F). Verify that f is a function.
 - (b) Let A = [0,3], B = [-1,2], and $F = \{(x,y) \mid x \in A \text{ and } y \in B \text{ and } 4x^2 + 9y^2 = 36\}$. Note that $F \subset A \times B$. Define f = (A, B, F). Is f a function? Justify your answer.
 - (c) Let A = [0,3], B = [0,1], and $F = \{(x,y) \mid x \in A \text{ and } y \in B \text{ and } 4x^2 + 9y^2 = 36\}$. Note that $F \subset A \times B$. Define f = (A, B, F). Is f a function? Justify your answer.
- 6. (a) Let $A = [0, +\infty)$, $F = \{(x, y) \mid x \in A \text{ and } y \in \mathbb{R} \text{ and } (y + 2)^2 = x\}$. Note that $F \subset A \times \mathbb{R}$. Is (A, \mathbb{R}, F) a function? Justify your answer.
 - (b) Let $A = [0, +\infty)$, $F = \{(x, y) \mid x \in A \text{ and } y \in A \text{ and } (y + 2)^2 = x\}$. Note that $F \subset A^2$. Is (A, A, F) a function? Justify your answer.
 - (c) Let $A = [0, +\infty)$, $B = [-2, +\infty)$, $F = \{(x, y) \mid x \in A \text{ and } y \in B \text{ and } (y+2)^2 = x\}$. Note that $F \subset A \times B$. Is (A, B, F) a function? Justify your answer.
- 7. Let $A = [0, 2], B = [0, 3], \text{ and } F = \{(x, y) \mid x \in A \text{ and } y \in B \text{ and } y^2 = x^2(2-x)\}$. Note that $F \subset A \times B$ by definition. Define f = (A, B, F).
 - (a) Verify that f is a function.
 - (b) Is f injective? Justify your answer.

8. Let $A = [0, +\infty)$. Let $\alpha, \beta \in \mathbb{R}$. Define $C_{\alpha,\beta} = \{(x, y) \mid (y - \beta)^2 = 1 + (x - \alpha)^3\}$.

- (a) Define $E_{\alpha} = A^2 \cap C_{\alpha,0}$.
 - i. For which values of α is (A, A, E_{α}) a function? Justify your answer.
 - ii. For which values of α is (A, A, E_{α}) an injective function? Justify your answer.
 - iii. For which values of α is (A, A, E_{α}) a surjective function? Justify your answer.
 - iv. For which values of α is (A, A, E_{α}) a bijective function? Justify your answer.

(b) Write $F_{\beta} = A^2 \cap C_{0,\beta}$.

- i. For which values of β is (A, A, F_{β}) a function? Justify your answer.
- ii. For which values of β is (A, A, F_{β}) an injective function? Justify your answer.
- iii. For which values of β is (A, A, F_{β}) a surjective function? Justify your answer.
- iv. For which values of β is (A, A, F_{β}) a bijective function? Justify your answer.

9. Let $A = \{x \in \mathbb{Q} : x = s^3 \text{ for some } s \in \mathbb{Q}\}, B = \{y \in \mathbb{Q} : y = t^4 \text{ for some } t \in \mathbb{Q}\}.$ Define

$$F = \left\{ (x, y) \middle| \begin{array}{l} x \in A \text{ and } y \in B \text{ and} \\ \text{there exists some } r \in \mathbb{Q} \text{ such that } (x = r^3 \text{ and } y = r^4). \end{array} \right\},$$

and f = (A, B, F). Note that $F \subset A \times B$.

- (a) Is f a function from A to B? Justify your answer.
- (b) Where f is a function, write down the 'formula of definition' of f.
- (c) Where f is a function, determine whether f is injective. Justify your answer.
- (d) Where f is a function, determine whether f is surjective. Justify your answer.
- 10. Consider the 'declarations' below through each of which some function is supposed to be defined. Determine whether it makes sense or not. Justify your answer.

(a) 'Define the function
$$f:[0,2] \longrightarrow \mathbb{R}$$
 by
$$\begin{cases} x^2 - x + 2 & \text{if } 0 \le x \le 1 \\ x^3 + x - 2 & \text{if } 1 \le x \le 2 \end{cases}$$

- (b) 'Define the function $f:[0,4] \longrightarrow \mathbb{R}$ by $\begin{cases} \ln(x+1) & \text{if } 0 \le x < 2\\ \log_{x-1}(x) & \text{if } 2 < x \le 4 \end{cases}$.
- 11. Consider the 'declarations' below through each of which some function is supposed to be defined. Determine whether it makes sense or not. Justify your answer.
 - (a) 'Define the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ by $f(t^4) = t^3$ for any $t \in \mathbb{R}$.'
 - (b) 'Define the function $f: (0, +\infty) \longrightarrow \mathbb{R}$ by $f(t/s) = \frac{t^2 + 1}{s^2 + 1}$ for any $s, t \in (0, +\infty)$.'

12. For each $n \in \mathbb{N} \setminus \{0\}$, we define $\omega_n = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$, and $Z_n = \{\zeta \in \mathbb{C} : \zeta = \omega_n^k \text{ for some } k \in \mathbb{Z}\}.$

You may take for granted that $\omega_n^n = 1$ and $Z_n = \{1, \omega_n, \omega_n^2, \cdots, \omega_n^{n-1}\}$. (Note that Z_n is the set of all *n*-th roots of unity.)

Consider the 'declarations' below through each of which some function is supposed to be defined. Determine whether it makes sense or not. Justify your answer.

- (a) 'Define the function $f: \mathbb{Z}_6 \longrightarrow \mathbb{Z}$ by $f(\omega_6^k) = 6k$ for any $k \in \mathbb{Z}$.'
- (b) 'Define the function $f: \mathbb{Z}_{12} \longrightarrow \mathbb{Z}_6$ by $f(\omega_{12}{}^k) = \omega_6{}^k$ for any $k \in \mathbb{Z}$.'

13. For any
$$k \in \mathbb{N} \setminus \{0\}$$
, define $\omega_k = \cos\left(\frac{2\pi}{k}\right) + i\sin\left(\frac{2\pi}{k}\right)$, and define $Z_k = \{\zeta \in \mathbb{C} : \zeta = \omega_k^j \text{ for some } j \in \mathbb{Z}\}.$

Let $m, n \in \mathbb{N} \setminus \{0\}$. Define the subset $F_{m,n}$ of $Z_m \times Z_n$ by

$$F_{m,n} = \{(\zeta, \eta) \mid \text{There exist some } r \in \mathbb{Z} \text{ such that } \zeta = \omega_m^r \text{ and } \eta = \omega_n^r \}.$$

Define the relation $f_{m,n}$ by $f_{m,n} = (Z_m, Z_n, F_{m,n})$. Consider the statements $(\star), (\star \star)$ below:

- (\star) *m* is divisible by *n*.
- $(\star\star)$ $f_{m,n}$ is a function from Z_m to Z_n .
- (a) Suppose (\star) holds. Prove that $(\star\star)$ holds.
- (b) Suppose $(\star\star)$ holds. Prove that (\star) holds.

14. Let $A = \mathbb{C} \setminus \{1\}$, $F = \{(x, y) \mid x \in A \text{ and } y \in A \text{ and } (x - 1)y = x\}$. Define f = (A, A, F). Note that $F \subset A^2$.

- (a) Verify that f is a function.
- (b) What is the 'formula of definition' of the function f.
- (c) Verify that the function f is bijective.
- (d) What is the 'formula of definition' of the inverse function of f.
- (e) What are the respective 'formulae of definition' of $f \circ f$ and $f \circ f \circ f$?

15. Let $D = \{ \zeta \in \mathbb{C} : |\zeta| < 1 \}$. Define

$$F = \left\{ \begin{array}{l} (z,w) \mid z \in \mathbb{C} \text{ and } w \in D \text{ and } w = \frac{z}{\sqrt{1+|z|^2}}(\cos(|z|)+i\sin(|z|)) \end{array} \right\}.$$

Note that $F \subset \mathbb{C} \times D$. Define $f = (\mathbb{C}, D, F)$.

- (a) Verify that f is a function.
- (b) Is f injective? Justify your answer.
- (c) Let $w \in D$, and $\theta \in \mathbb{R}$. Define the complex number v by $v = \frac{w}{\sqrt{1 |w|^2}} (\cos(\theta) + i\sin(\theta))$.

Verify that

$$f(v) = Kw(\cos(L\theta + M \cdot \frac{|w|}{\sqrt{1 - |w|^2}}) + i\sin(L\theta + M \cdot \frac{|w|}{\sqrt{1 - |w|^2}}))$$

Here K, L, M are some appropriate non-negative integers whose values are independent of that of w and θ . You have to determine the value of K, L, M explicitly.

(d) Is f bijective? Justify your answer.