1. The statement (\ddagger) is true:

(\sharp) Let A, B be sets and $f : A \longrightarrow B$ be a function. For any subset U of B, $f(f^{-1}(U)) \subset U$.

Proof of the statement (\sharp) ?

• Let A, B be sets and $f : A \longrightarrow B$ be a function. Let U be a subset of B.

Want to prove :
$$f(f^{-1}(U)) \subset U$$
.
This reads : For any object y, if $y \in f(f^{-1}(U))$ then $y \in U$.
Pickany object y. Suppose $y \in f(f^{-1}(U))$. [Try to deduce : $y \in U$.]
By the definition of image sets,
there exists some $x \in f^{-1}(U)$ such that $y = f(x)$.
Now $x \in f^{-1}(U)$.
By the definition of pre-image sets,
there exists some $z \in U$ such that $z = f(x)$.
Then $y = f(x) = z \in U$.
It follows that $f(f^{-1}(U)) \subset U$.

2. The statement (\flat) is false:

(b) Let A, B be sets and $f : A \longrightarrow B$ be a function. For any subset U of B, $f(f^{-1}(U)) \supset U$.

Dis-proof of the statement (\flat) ?

Negative of (b) reads:
'There exist some sets A, B, come function
$$f: A \Rightarrow B$$
, some subset $U \neq B$
such that $f(f'(U)) \neq U$.'
We give a counter-example for the dis-proof of (b):
• Take $A = \{0\}, B = \{1, 2\}, U = \{1, 2\}.$
Note that $U \subset B$.
Define the function $f: A \Rightarrow B$ by $f(0) = 1$.
Note that $f'(U) = \{0\}$ and $f(f'(U)) = \{1\}.$
We have $2 \in U$ and $2 \notin f(f'(U))$.
Then $U \notin f(f'(U))$.

3. Follow-up questions:

(a) Can we impose further assumption on f to make the conclusion in the statement (b) hold?

(We are looking for some sufficient condition(s) for the statement $(\flat).)$

It is a difficult question: how to conjure something out of nothing?

(b) What must happen to f if the conclusion in the statement (b) is true?(We are looking for some necessary condition(s) for the statement (b).)

• Suppose that for any subset U of B, $f(f^{-1}(U)) \supset U$. [So what happens?]

(an we name some sets which we know for sure are subset of B?)
B is a subset of B. Then
$$f(f'(B)) > B$$
.
Note that $A = f'(B)$. [We need Theorem (1).]
Then $f(A) > B$.
Now, for any y∈B, we have y∈ $f(A)$. For the same y,
there exists some x∈ A such that $y=f(x)$. [We have used definition of image set.]
It follows that f is surjective. □

Follow-up questions:

(a) Can we impose further assumption on f to make the conclusion in the statement (b) hold?

(We are looking for some sufficient condition(s) for the statement (b).)

- (b) What must happen to f if the conclusion in the statement (b) is true?(We are looking for some necessary condition(s) for the statement (b).)
 - Suppose that for any subset U of B, $f(f^{-1}(U)) \supset U$. Then f is surjective.

(c) Is the necessary condition sufficient?

We ask whether the statement below is true:

• Suppose f is surjective. Then for any subset U of B, $f(f^{-1}(U)) \supset U$.

Answer: Yes. Justification?
• Suppose
$$f$$
 is surjective.
Pick any subset U of B . [Want to deduce: $U \subset f(f^{-1}(U))$.]
Pick any object y . Suppose $y \in U$. [Want to deduce: $y \in f(f^{-1}(U))$.]
We have $y \in B$. By surjectivity, there exists some $x \in A$ such that $y = f(x)$.
Since $y = f(x)$ and $y \in U$, we have $x \in f^{-1}(U)$. [We have used definition of pre-image sets.]
Since $y = f(x)$ and $x \in f^{-1}(U)$, we have $y \in f(f^{-1}(U))$. [We have used definition of image sets.]
It follows that $U \subset f(f^{-1}(U))$.

- 4. Conclusion in this investigation? The statement (\star) holds:
 - (*) Let A, B be sets and $f : A \longrightarrow B$ be a function. The following statements are equivalent:
 - $(\star_1) f$ is surjective.
 - (\star_2) For any subset U of B, $f(f^{-1}(U)) \supset U$.
 - (\star_3) For any subset U of B, $f(f^{-1}(U)) = U$.

This is a characterization of the surjectivity of a function in terms of image sets and pre-image sets.

Question. What about a characterization of the injectivity of a function in terms of image sets and pre-image sets?

The statement (\star') holds:

 (\star') Let A, B be sets and $f : A \longrightarrow B$ be a function. The following statements are equivalent:

 $(\star'_1) f$ is injective.

- (\star'_2) For any subset S of A, $f^{-1}(f(S)) \subset S$.
- (\star'_3) For any subset S of A, $f^{-1}(f(S)) = S$.