1. **Definitions**.

Let A, B be sets and $f: A \longrightarrow B$ be a function from A to B.

(a) Let S be a subset of A. The **image set of the set** S **under the function** f is defined to be the set

$$\{y \in B : \text{There exists some } x \in S \text{ such that } y = f(x)\}.$$

It is denoted by f(S).

(b) Let U be a subset of B. The **pre-image set of the set** U **under the function** f is defined to be the set

$$\{x \in A : \text{There exists some } y \in U \text{ such that } y = f(x)\}.$$

It is denoted by $f^{-1}(U)$.

2. **Theorem (1)**.

Let A, B be sets, and $f: A \longrightarrow B$ be a function. The following statements hold:

- (1a) $f(\emptyset) = \emptyset$.
- (1b) $f^{-1}(\emptyset) = \emptyset$.
- (1c) $f(A) \subset B$.
- (1d) $f^{-1}(B) = A$.
- (1b) Let $x \in A$. $f(\{x\}) = \{f(x)\}$.
- (1c) Let $x \in A$, $y \in B$. The statements below are logically equivalent:
 - (i) $x \in f^{-1}(\{y\})$.
 - (ii) $f(x) \in \{y\}$.
 - (iii) f(x) = y.

3. **Theorem (2)**.

Let A, B be sets, and $f: A \longrightarrow B$ be a function. The following statements hold:

- (2a) Let S, T be subsets of A. Suppose $S \subset T$. Then $f(S) \subset f(T)$.
- (2b) Let H, K be subsets of A.
 - $(1) f(H \cup K) \supset f(H) \cup f(K).$
 - $(2) f(H \cup K) \subset f(H) \cup f(K).$
 - $(3) f(H \cup K) = f(H) \cup f(K).$
- (2c) Let H, K be subsets of A. $f(H \cap K) \subset f(H) \cap f(K)$.

4. Proof of Statement (2a) of Theorem (2).

Let A, B be sets and $f: A \longrightarrow B$ be a function.

Let S, T be subsets of A. Suppose $S \subset T$.

[We want to deduce that $f(S) \subset f(T)$.

What to do, really? We want to prove:

Think about this before proceeding any further.]

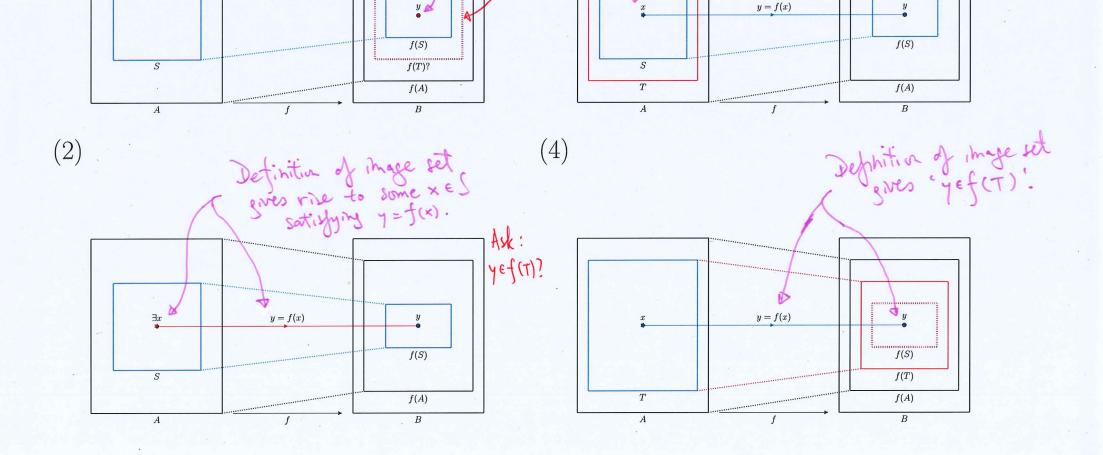
Proof of Statement (2a) of Theorem (2).

... Suppose $S \subset T$. [Want to prove: $f(S) \subset f(T)$. This reads: 'for any y, if $y \in f(S)$ then $y \in f(T)$.]

(1)

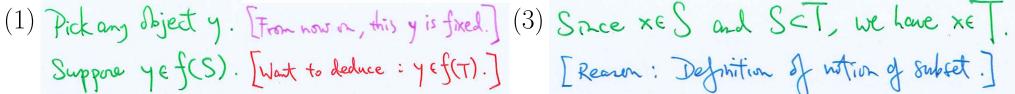
Definition of 'abset relation' gives 'xeT'.

Ask: $y \in f(T)$?

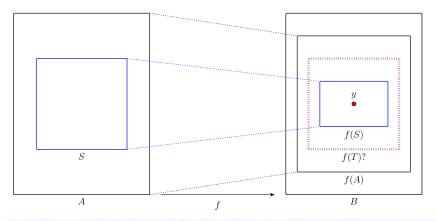


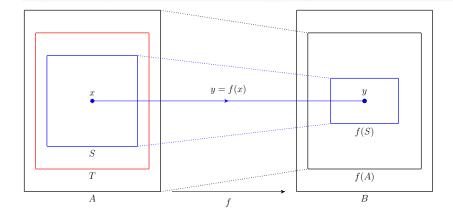
Proof of Statement (2a) of Theorem (2).

... Suppose $S \subset T$. Want to prove: $f(S) \subset f(T)$. This reads: for any y, if $y \in f(S)$ then $y \in f(T)$.



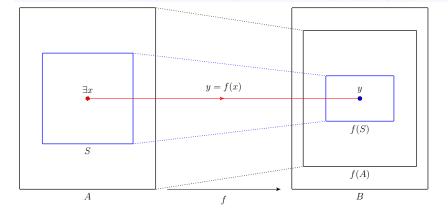
Suppose y \(\int \(\int \) (Suppose y \(\

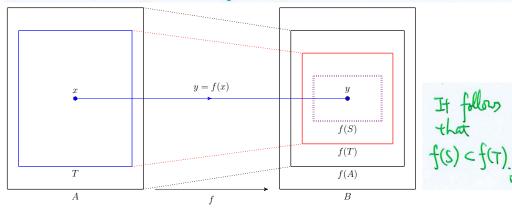






since $x \in T$ and y = f(x), we have $y \in f(T)$. [Reason: Definition of image sets.]





5. Proof of Statement (2b) of Theorem (2).

Let A, B be sets and $f: A \longrightarrow B$ be a function. Let H, K be subsets of A.

(1) [We want to prove that $f(H) \cup f(K) \subset f(H \cup K)$.]

Note that
$$H \subset H \cup K$$
. Then, by $(2a)$, we have $f(H) \subset f(H \cup K)$.
 Also note that $K \subset H \cup K$. Then, by $(2a)$, we have $f(K) \subset f(H \cup K)$.
 Since $f(H) \subset f(H \cup K)$ and $f(K) \subset f(H \cup K)$, we have $f(H) \cup f(K) \subset f(H \cup K)$.

(2) [We want to prove that $f(H \cup K) \subset f(H) \cup f(K)$.

What to do, really? We want to prove:

Think about this before proceeding any further.]

Pick any object y. Suppose yef(HUK).

Then, by the definition of image sets,

there exists some
$$x \in HUK$$
 such that $y = f(x)$.

Since $x \in HUK$, we have $x \in H$ or $x \in K$.

* (Case 1). Suppose $x \in H$.

Since $x \in H$ and $y = f(x)$ we have $y \in f(H)$.

Then $y \in f(H)$ or $y \in f(K)$. Therefore $y \in f(H)$ $Uf(K)$.

[It follows that $f(HUK) = f(H)$ $Uf(K)$.

(3) By (2b1), (2b2), we have $f(H \cup K) = f(H) \cup f(K)$.

6. Proof of Statement (2c) of Theorem (2).

Let A, B be sets and $f: A \longrightarrow B$ be a function. Let H, K be subsets of A. [We want to prove $f(H \cap K) \subset f(H) \cap f(K)$.]

Note that HOKCH. Then, by (2a), we have $f(H \cap K) \subset f(H)$. Also note that HAKCK. Then, by (2a), we have $f(H \cap K) \subset f(K)$. Since f(Hnk) c f(H) and f(Hnk) c f(k), we have f(Hnk) < f(H) nf(K).

7. **Theorem (3)**.

Let A, B be sets, and $f: A \longrightarrow B$ be a function. The following statements hold:

(3a) Let U, V be subsets of B. Suppose $U \subset V$. Then $f^{-1}(U) \subset f^{-1}(V)$.

(3b) Let U, V be subsets of B.

$$(1) f^{-1}(U \cup V) \supset f^{-1}(U) \cup f^{-1}(V).$$

(2)
$$f^{-1}(U \cup V) \subset f^{-1}(U) \cup f^{-1}(V)$$
.

(3)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
.

(3c) Let U, V subsets of B.

$$(1) f^{-1}(U \cap V) \subset f^{-1}(U) \cap f^{-1}(V).$$

$$(2) f^{-1}(U \cap V) \supset f^{-1}(U) \cap f^{-1}(V).$$

(3)
$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$
.

8. Proof of Statement (3b2) of Theorem (3).

Let A, B be sets, and $f: A \longrightarrow B$ be a function. Let U, V be subsets of B.

[We want to prove that $f^{-1}(U \cup V) \subset f^{-1}(U) \cup f^{-1}(V)$.

What to do, really? We want to prove:

Think about this before proceeding any further.]

Proof of Statement (3b2) of Theorem (3).

... Let U, V be subsets of B.

```
Want to prove: f'(U UV) < f'(U) Uf'(V).
This reads: 'For any object x, if x & f'(UUV) then x & f'(U) U f'(V)'.
 Pick any object x.
  Suppre x & f'(UUV).
 Then, by the definition of pre-image sets, there exists some y \in U \cup V such that y = f(x).
  Since y \( \mathbb{U} \mu \mathbb{V}, we have y \( \mathbb{U} \) or y \( \mathbb{V} \).
  * (Casel). Suppre y & U.
               Since y ∈ U and y=f(x), we have x ∈ f'(U).
               Then x \in f^{-1}(V) or x \in f^{-1}(V).
               Therefore x \( \xi \) \( \f'(\mu) \).
 * (Case 2). Supprie y & V. [...] Therefore x & f - (U) U f - (V).
    Hence, in any case, we have x \in f'(U) \cup f'(V).
     It follows that f'(UUV) c f'(U) Uf'(V).
```

9. Remark.

Which of the statements is true? Which not?

- (a) Let A, B be sets, and $f: A \longrightarrow B$ be a function. Let S, T be subsets of A. Suppose $f(S) \subset f(T)$. Then $S \subset T$.
- (b) Let A, B be sets, and $f: A \longrightarrow B$ be a function. Let U, V be subsets of B. Suppose $f^{-1}(U) \subset f^{-1}(V)$. Then $U \subset V$.
- (c) Let A, B be sets, and $f: A \longrightarrow B$ be a function. Let H, K be subsets of A. $f(H \cap K) \supset f(H) \cap f(K).$

They are all false. (Can you provide counter-examples for the respective dis-proofs?)

10. **Theorem (4)**.

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. The following statements hold:

- (4a) Let S be a subset of A. $(g \circ f)(S) = g(f(S))$.
- (4b) Let W be a subset of C. $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$.

11. Proof of Statement (4b) of Theorem (4).

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. Let W be a subset of C.

[We want to prove the set equality $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$.

Hence we separate arguments into two parts, each on a 'subset relation'.

Which two?

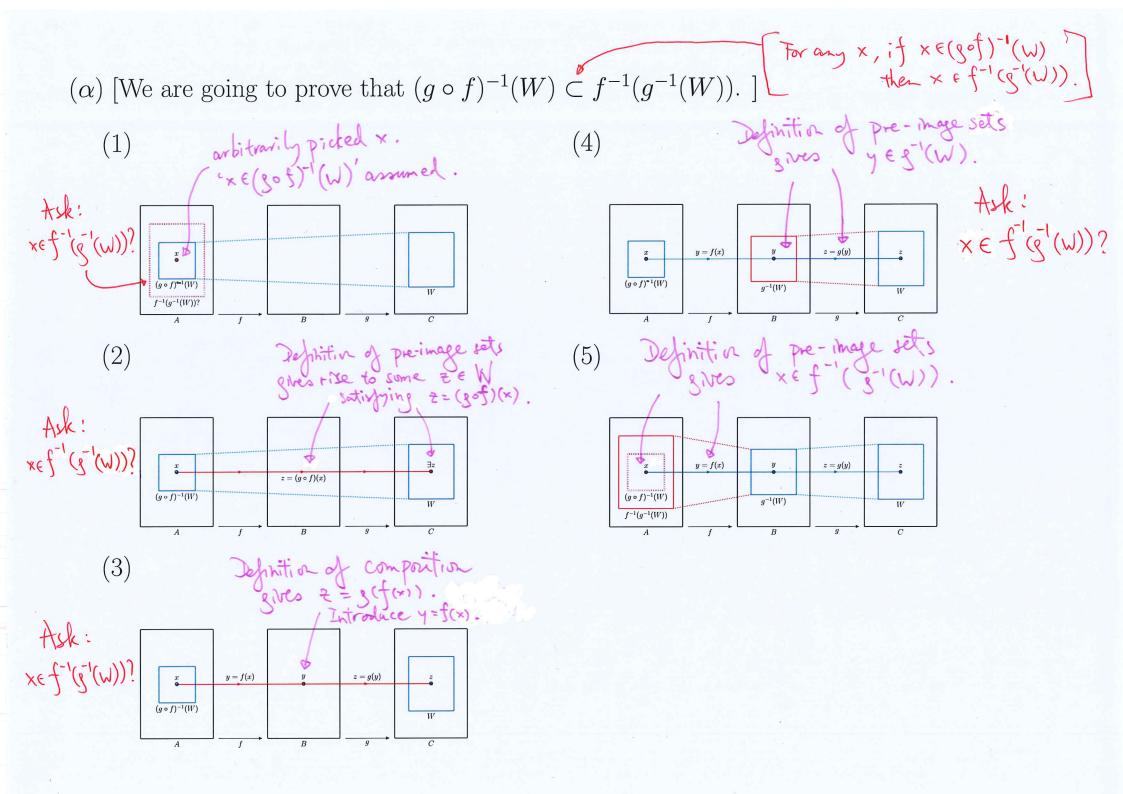
$$(\alpha)\ (g\circ f)^{-1}(W)\subset f^{-1}(g^{-1}(W)).$$

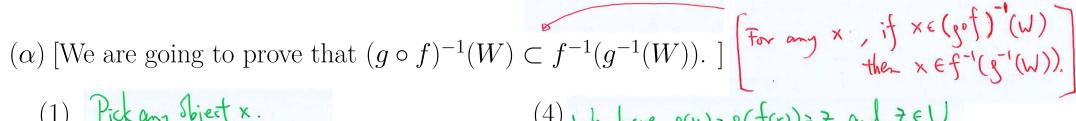
This reads: 'For any Object x, if $x \in (9 \circ f)^{-1}(W)$ then $x \in f^{-1}(g^{-1}(W))$.'

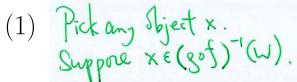
$$(\beta) (g \circ f)^{-1}(W) \supset f^{-1}(g^{-1}(W)).$$

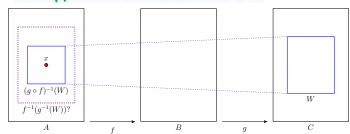
This reads: For any object x, if $x \in f^{-1}(g^{-1}(W))$ then $x \in (g \circ f)^{-1}(W)$.

Think about this before proceeding any further.]

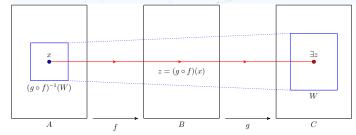




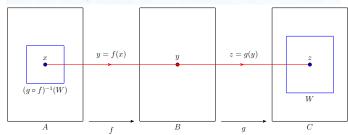




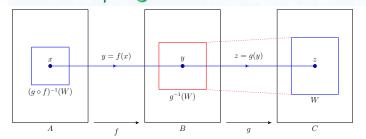
(2) Then there exits some ze W such that z = (gof)(x).



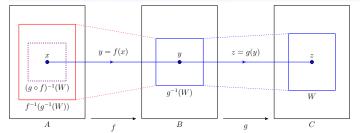
(3) We have z = g(f(x)). Take y = f(x). Note that $y \in B$.



(4) We have g(y) = g(f(x)) = 2 and $2 \in \mathbb{V}$. Then $y \in g'(W)$.



(5) We have f(x) = y and $y \in g^{-1}(W)$. Then $x \in f^{-1}(g^{-1}(W))$.



It follows that $(g \circ f)^{-1}(W) \subset f^{-1}(g^{-1}(W)).$

Proof of Statement (4b) of Theorem (4).

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. Let W be a subset of C. [We want to prove $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$.]

- (α) ... It follows that $(g \circ f)^{-1}(W) \subset f^{-1}(g^{-1}(W))$.
- (β) [We are going to prove that $(g \circ f)^{-1}(W) \supset f^{-1}(g^{-1}(W))$.]

Pick any object x.
Suppose
$$x \in f^{-1}(g^{-1}(W))$$
.
Then, by the definition of pre-image sets;
there exists some $y \in g^{-1}(W)$ such that $y = f(x)$.
Now $y \in g^{-1}(W)$.
Then, by the definition of pre-image sets,
there exists some $z \in W$ and $z = g(y) = g(f(x)) = (g \circ f)(x)$. Then $x \in (g \circ f)^{-1}(W)$.
It follows that $f^{-1}(g^{-1}(W)) \subset (g \circ f)^{-1}(W)$.

It follows that $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W)).$

12. **Theorem (5)**.

Let A, B be sets, and $f: A \longrightarrow B$ be a function. The following statements hold:

- (5a) Let S be a subset of A. $f^{-1}(f(S)) \supset S$.
- (5b) Let U be a subset of B. $f(f^{-1}(U)) \subset U$.
- (5c) Let S be a subset of A. $f(f^{-1}(f(S))) = f(S)$.
- (5d) Let U be a subset of B. $f^{-1}(f(f^{-1}(U))) = f^{-1}(U)$.
- (5e) Let S be a subset of A, and U be a subset of B. $f(S \cap f^{-1}(U)) = f(S) \cap U$.

13. **Definition.**

Let A, B be sets and $f: A \longrightarrow B$ be a function. f is said to be **surjective** if the statement (S) holds:

(S): For any $y \in B$, there exists some $x \in A$ such that y = f(x).

Theorem (6). (Characterizations of surjectivity).

Let A, B be sets and $f: A \longrightarrow B$ be a function.

The following statements are equivalent:

$$(I) f$$
 is surjective.

(I)
$$f$$
 is surjective. (Ia) $f(A) = B$.

(Ib)
$$f(A) \supset B$$
.

(II) For any subset U of B, $f(f^{-1}(U))\supset U$.

(IIa) For any subset U of B, $f(f^{-1}(U)) = U$.

(III) For any subset U of B, there exists some subset S of A such that U = f(S).

(IV) For any subset T of A, $f(A \setminus T) \supset B \setminus f(T)$.

(V) For any subset U, V of B, if $f^{-1}(U) \subset f^{-1}(V)$ then $U \subset V$.

(VI) For any subset U, V of B, if $f^{-1}(U) = f^{-1}(V)$ then U = V.

Proof of Theorem (6)?

14. **Definition.**

Let A, B be sets and $f: A \longrightarrow B$ be a function. f is said to be **injective** if the statement (I) holds:

(I): For any $x, w \in A$, if f(x) = f(w) then x = w.

Theorem (7). (Characterizations of injectivity).

Let A, B be sets and $f: A \longrightarrow B$ be a function.

The following statements are equivalent:

- (I) f is injective.
- (II) For any subset S of A, $f^{-1}(f(S)) \subset S$.
- (IIa) For any subset S of A, $f^{-1}(f(S)) = S$.
- (III) For any subset S of A, there exists some subset U of B such that $S = f^{-1}(U)$.
- (IV) For any subset S, T of $A, f(S \cap T) \supset f(S) \cap f(T)$.
- (IVa) For any subset S, T of $A, f(S \cap T) = f(S) \cap f(T)$.
 - (V) For any subsets S, T of A, if $f(S) \subset f(T)$ then $S \subset T$.
- (VI) For any subsets S, T of A, if f(S) = f(T) then S = T.

15. **Theorem (8)**.

Let A, B be sets and $f: A \longrightarrow B$ be a function.

- (8a) Let $\{U_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of B. $(\{f^{-1}(U_n)\}_{n=0}^{\infty}$ is an infinite sequence of subsets of A.) The following statements hold:
 - (1) $f^{-1}(\bigcap_{n=0}^{\infty} U_n) = \bigcap_{n=0}^{\infty} f^{-1}(U_n).$
 - (2) $f^{-1}(\bigcup_{n=0}^{\infty} U_n) = \bigcup_{n=0}^{\infty} f^{-1}(U_n).$
- (8b) Let $\{S_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of A. $(\{f(S_n)\}_{n=0}^{\infty}$ is an infinite sequence of subsets of B.) The following statements hold:
 - (1) $f(\bigcap_{n=0}^{\infty} S_n) \subset \bigcap_{n=0}^{\infty} f(S_n).$
 - (2) $f(\bigcup_{n=0}^{\infty} S_n) = \bigcup_{n=0}^{\infty} f(S_n).$
- (8c) The statements below are logically equivalent:
 - (i) f is injective.
 - (ii) For any infinite sequence of subsets $\{S_n\}_{n=0}^{\infty}$ of A, $f(\bigcap_{n=0}^{\infty} S_n) = \bigcap_{n=0}^{\infty} f(S_n)$.