#### 1. 'In-formal' definition for the notion of function.

Recall the in-formal definition for the notion of function':

Let D, R be sets.

h is a function from D to R exactly when h is a 'rule of assignment' from D to R, so that each element x of D is being assigned to exactly one element, namely h(x), of R.

D is called the domain of h. R is called the range of h.

Below are the 'coordinate plane diagram' and the 'blobs-and-arrow diagram' for such a mathematical object, say, the function  $h: D \longrightarrow R$ .



Here  $D = \{m, n, o, p, q, s, t, ...\}, R = \{c, e, i, j, k, ...\},\$   $h(m) = e, h(n) = i, h(o) = i, h(p) = k, h(q) = k, h(s) = k, h(t) = k, \dots, \text{ and}$ the graph of h is the set  $H = \{(m, e), (n, i), (o, i), (p, k), (q, k), (s, k), (t, k), \dots\}.$ 

# 2. Problem in the 'in-formal' definition for the notion of function, and the solution.

• What do we mean by the phrase '*rule of assignment*'?

• How to solve this problem?

• But what kind of sets shall we be looking at? Why?

### 3. Towards the formal definition for the notion of function.

We expect the graph of a function to be necessarily a subset of the cartesian product of the domain and the range.

However, it cannot be just any subset:

# (a) 'First forbiddance':

Subsets of  $D \times R$  like the one below will not be allowed to be the graph of any function:



The reason for this forbiddance is that some element of D, namely o, is being assigned to no element of R.

To be Write 
$$G = \{(n,e), (n,i), (p,k), (q,k), (s,k), (t,k), ...\}$$
  
more precise? For this G, there exists some  $x \in D$ , namely  $x = 0$ , such that for any  $y \in R$ ,  $(x,y) \notin G$ .

## Towards the formal definition for the notion of function.

We expect the graph of a function to be necessarily a subset of the cartesian product of the domain and the range.

However, it cannot be just any subset:

As a 'rule of assignment', the function has to satisfy: each element of its domain is being assigned to exactly one element of its range.

(a) 'First forbiddance': ...

# (b) 'Second forbiddance':

Subsets of  $D \times R$  like the one below will not be allowed to be the graph of any function:



The reason for this forbiddance is that some element of D, namely o, is being assigned to distinct elements of R, namely i, j.

| To be   | Write $G = f(m, e)$ ,   | (n,i), (o,i), (o,j), (p,k), (q,k), (s,k), (t,k), }] |
|---------|-------------------------|-----------------------------------------------------|
| more    | For this G, there exits | some xED, y, Z ER, namely x=0, y=i, Z=j,            |
| praise; | such that               | $(x,y) \in G$ and $(x,z) \in G$ and $y' \neq z$ .   |

## 4. Definition. (Relations.)

Let J, K, L be sets.

The ordered triple (J, K, L) is called a **relation from** J **to** K **with graph** L if L be a subset of  $J \times K$ .

The sets J, K are respectively called the set of departure and the set of destination of the relation (J, K, L).

## Definition. (Functions as relations.)

Let D, R be sets, and H be a subset of  $D \times R$ .

The relation (D, R, H) is said to be a function from domain D to range R with graph H if both of the statements (E), (U) below hold:

(E): For any  $x \in D$ , there exists some  $y \in R$  such that  $(x, y) \in H$ .

(U): For any  $x \in D$ , for any  $y, z \in R$ , if  $(x, y) \in H$  and  $(x, z) \in H$  then y = z.

Where we refer to (D, R, H) as h, we may write y = h(x) (or  $x \underset{h}{\longmapsto} y$ ) exactly when  $(x, y) \in H$ .

#### Definition. (Functions as relations.)

Let D, R be sets, and H be a subset of  $D \times R$ .

The relation (D, R, H) is said to be a function from domain D to range R with graph H if both of the statements (E), (U) below hold:

(E): For any  $x \in D$ , there exists some  $y \in R$  such that  $(x, y) \in H$ .

(U): For any  $x \in D$ , for any  $y, z \in R$ , if  $(x, y) \in H$  and  $(x, z) \in H$  then y = z.

#### Remarks.

(a) It is through the graph H of the function h that we understand how h assigns the elements of its domain D to its range R.

Condition (E) and Condition (U) are formulated to describe what we want H to satisfy as a subset of  $D \times R$ .

(b) In plain words, When Conditions (E), (U) read:

(E): Each element of D is assigned by h to at least one element of R.

(U): Each element of D is assigned by h to at most one element of R.

So Condition (E), (U) respectively guarantee that the 'first forbiddance' and the 'second forbiddance' are upheld.

(c) The conjunction (E) and (U)' reads:

(EU): Each element of D is assigned by h to exactly one element of R.

Thus we have 'recovered' the 'in-formal definition for the notion of function'.