1. Definition.

Let A, B be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow A$ be functions. g is said to be an **inverse function** of f if both of the following statements hold:

- (a) For any $x \in A$, $(g \circ f)(x) = x$.
- (b) For any $y \in B$, $(f \circ g)(y) = y$.

Definition.

Let C be a set. Define the function $id_C: C \longrightarrow C$ by $id_C(z) = z$ for any $z \in C$. id_C is called the identity function on the set C.

Remark 1 on the definition for the notion of inverse function.

By the respective definitions for the notions of inverse function, composition, and identity function:

 $g: B \longrightarrow A$ is an inverse function of $f: A \longrightarrow B$ iff $(g \circ f = id_A \text{ and } f \circ g = id_B \text{ as functions}).$

Remark 2 on the definition for the notion of inverse function.

Note the 'symmetry' in the definition for the notion of inverse function.

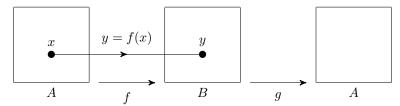
A consequence of this 'symmetry' is:

 $g: B \longrightarrow A$ is an inverse function of $f: A \longrightarrow B$ iff $f: A \longrightarrow B$ is an inverse function of $g: B \longrightarrow A$.

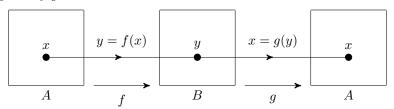
Remark 3 on the definition for the notion of inverse function.

How does such a function g 'interact' with f? (First recall the notion of composition of functions.)

(a) Pick any $x \in A$. x is 'assigned' by f to f(x).



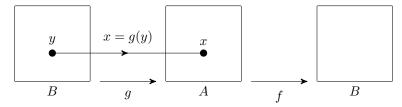
But then f(x) is 'assigned' by q to x.



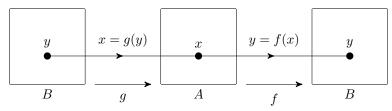
So g 'cancels' what f does to x.

This is a formal way to tell the above story: for any $x \in A$, for any $y \in B$, if y = f(x) then x = g(y).

(b) Pick any $y \in B$. y is 'assigned' by g to g(y).



But then g(y) is 'assigned' by f to y.



So f 'cancels' what g does to y.

This is a formal way to tell the above story: for any $y \in B$, for any $x \in A$, if x = g(y) then y = f(x).

We may combine the above as: for any $x \in A$, for any $y \in B$, (y = f(x)) iff x = g(y).

2. Theorem (1). (Re-formulation of the definition of inverse function.)

Let A, B be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow A$ be functions. The statements below are logically equivalent:

- (\star_0) g is an inverse function of f.
- (\star_1) $g \circ f = id_A$ and $f \circ g = id_B$ as functions.
- (\star_2) f is an inverse function of g.
- (\star_3) For any $x \in A$, for any $y \in B$, (y = f(x) iff x = g(y)).

Proof of Theorem (1).

Let A, B be sets, and $f: A \longrightarrow B, g: B \longrightarrow A$ be functions.

By definition, the statements $(\star_0), (\star_1), (\star_2)$ are logically equivalent:

 (\star_0) q is an inverse function of f. (\star_1) q

 (\star_1) $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$.

 (\star_2) f is an inverse function of g.

We are going to verify that the statements $(\star_0), (\star_3)$ are logically equivalent:

 (\star_0) g is an inverse function of f.

 (\star_3) For any $x \in A$, for any $y \in B$, (y = f(x)) iff x = g(y).

• $[(\star_0) \Longrightarrow (\star_3)?]$

Suppose g is an inverse function of f. Pick any $x \in A$, $y \in B$.

- * Suppose y = f(x). Then $g(y) = g(f(x)) = (g \circ f)(x) = x$ by definition of inverse function.
- * Suppose x = g(y). Then $f(x) = f(g(y)) = (f \circ g)(y) = y$ by definition of inverse function.

It follows that y = f(x) iff x = g(y).

• $[(\star_3) \Longrightarrow (\star_0)?]$

Suppose that for any $x \in A$, $y \in B$, (y = f(x)) iff x = g(y).

- * Pick any $s \in A$. Define u = f(s). We have $u \in B$. By assumption s = g(u). Then $(g \circ f)(s) = g(f(s)) = g(u) = s$.
- * Pick any $v \in B$. Define t = g(v). We have $t \in A$. By assumption v = f(t). Then $(f \circ g)(v) = f(g(v)) = f(t) = v$.

It follows that g is an inverse function of f.

3. Theorem (2). (Uniqueness of inverse function.)

Let A, B be sets, and $f: A \longrightarrow B$ be a function. f has at most one inverse function.

Proof of Theorem (2).

Let A, B be sets, and $f: A \longrightarrow B$ be a function. Suppose $g, h: B \longrightarrow A$ are inverse functions of f.

[We want to deduce that g(y) = h(y) for any $y \in B$.]

Pick any $y \in B$. Define x = g(y). We have $x \in A$. Then y = f(g(y)) = f(x). Therefore h(y) = h(f(x)) = x = g(y). It follows that g, h are the same function.

4. Definition.

Let D, R be sets and $h: D \longrightarrow R$ be a function. h is said to be **bijective** if h is both surjective and injective.

Remark. Hence h is bijective iff both of the statements (S), (I) below hold:

- (S): For any $v \in R$, there exists some $u \in D$ such that v = h(u).
- (I): For any $u, t \in D$, if h(u) = h(t) then u = t.

5. Theorem (3). (Necessary condition for existence of inverse function.)

Let A, B be sets, $f: A \longrightarrow B$ be a function. Suppose f has an inverse function, say, $g: B \longrightarrow A$. Then each of f, g is bijective.

Proof of Theorem (3).

Let A, B be sets, $f: A \longrightarrow B$ be a function. Suppose f has an inverse function, say, $g: B \longrightarrow A$.

- [Ask: 'Is f surjective?'] Pick any $y \in B$. Define x = g(y). We have $x \in A$. For the same x, y, we have f(x) = f(g(y)) = y. Therefore f is surjective.
- [Ask: 'Is f injective?'] Pick any $x, w \in A$. Suppose f(x) = f(w). Then x = g(f(x)) = g(f(w)) = w. Therefore f is injective.

By definition, g is an inverse function of f. Then by Theorem (1), g has an inverse function, namely, f. It follows from the argument above that g is both surjective and injective.

Remark. The natural question to ask is: Is the necessary condition sufficient?