1. Definitions.

(a) Let A, B,C be sets, and f : A — B, g : B — C' be functions.
Define the function go f : A — C by (g o f)(z) = g(f(x)) for any x € A.

g o f is called the composition of the functions f, g.

(b) Let D, R be sets, and h : D — R be a function.

i. h is said to be surjective if
(for any v € R there exists some u € D such that v = h(u)).
ii. h is said to be injective if
(for any t,u € D, if h(t) = h(u) then t = u).

2. Theorem (f).
Let A,B,C besets, and f : A— B, g : B — C be functions.
The following statements hold:

(1) Suppose f, g are surjective. Then g o f is surjective.
(2) Suppose f, g are injective. Then g o f is injective.



3. Proof of Statement (1) of Theorem (f;) .
Let A, B,C besets, and f : A— B, g : B — C be functions.

Suppose f, g are surjective. [We want to verify that go f is surjective under this assumption. |
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Proof of Statement (1) of Theorem (f;) .
Let A,B,C besets,and f: A— B, g: B — C be functions.

Suppose f, g are surjective. [We want to verify that go f is surjective under this assumption.]
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Proof of Statement (1) of Theorem (f;) (without pictures).
Let A,B,C besets,and f: A— B, g: B — C be functions.

Suppose f, g are surjective.

(We want to verify that g o f is surjective under this assumption. By the definition of
surjectivity, this is the same as verifying that for any z € C, there exists some x € A such

that 2 = (g o f)(z) ]

Pick any z € C.

[We want to argue that for this same z, there is some x satisfying z = (g o f)(x).]
For this z € C, by the surjectivity of g, there exists some y € B such that z = g(y).
For the same y € B, by the surjectivity of f, there exists some x € A such that y = f(z).

For the same z € C, z € A, we have z = g(f(z)) = (g o f)(z).

It follows that g o f is surjective.



4. Proof of Statement (2) of Theorem (f};) .
Let A, B,C besets, and f: A— B, g : B — C be functions.

Suppose f, g are mJectlve [We want to verlfy that go f is injective under this assumption.]
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Proof of Statement (2) of Theorem (f;) .

Let A,B,C besets,and f: A— B, g: B — C be functions.

Suppose f, g are injective. [We want to verify that g o f is injective under this assumption.]
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Proof of Statement (2) of Theorem (f;) (without pictures).
Let A,B,C besets,and f: A— B, g: B — C be functions.

Suppose f, g are injective.

(We want to verify that g o f is injective under this assumption. By the definition of
injectivity, this is the same as verify that for any x,w € A, if (g o f)(x) = (g o f)(w) then
r=w.

Pick any x,w € A.
[We want to argue that for the same x, w, if (g o f)(z) = (g o f(w)) then x = w]

Suppose (g o f)(z) = (g o f)(w). Then g(f(z)) = g(f(w)).
By the injectivity of g, since g(f(z)) = g(f(w)), we have f(x) = f(w).

By the injectivity of f, since f(x) = f(w), we have x = w.

It follows that g o f is injective.



5. Theorem (15).
Let A,B,C besets, and f : A— B, g : B — C be functions.

The following statements hold.:
(1) Suppose g o f is surjective. Then g is surjective.
(2) Suppose g o f is injective. Then f is injective.

Proof of Theorem (fi;).  Exercise.

Remark.

The statements below are false. Dis-prove each of them by giving a counter-example.

(1) Let A, B,C be sets, and f : A — B, g : B — C' be functions.

Suppose g o [ is surjective. Then f is surjective.
(2) Let A, B,C be sets, and f : A — B, g : B — C' be functions.

Suppose g o f is injective. Then g is injective.



Further remark.
Which of the statements below are true? Which are false?

(1) Let A, B be sets, and f : A — B, g : B — A be functions.
Suppose g o f is surjective. Then f o g is surjective.

(2) Let A, B be sets, and f : A — B, g : B — A be functions.
Suppose g o f is injective. Then f o g Is injective.

(3) Let A be a set, and f,g: A — A be functions.
Suppose g o f is surjective. Then f o g is surjective.

(4) Let A be a set, and f,g: A — A be functions.

Suppose g o f is injective. Then f o g is injective.





