1. **Definitions**.

(a) Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. Define the function $g \circ f : A \longrightarrow C$ by $(g \circ f)(x) = g(f(x))$ for any $x \in A$. $g \circ f$ is called the **composition** of the functions f, g.

(b) Let D, R be sets, and $h: D \longrightarrow R$ be a function.

i. h is said to be **surjective** if

(for any $v \in R$ there exists some $u \in D$ such that v = h(u)).

ii. h is said to be **injective** if

(for any $t, u \in D$, if h(t) = h(u) then t = u).

2. Theorem (\sharp_1) .

Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. The following statements hold:

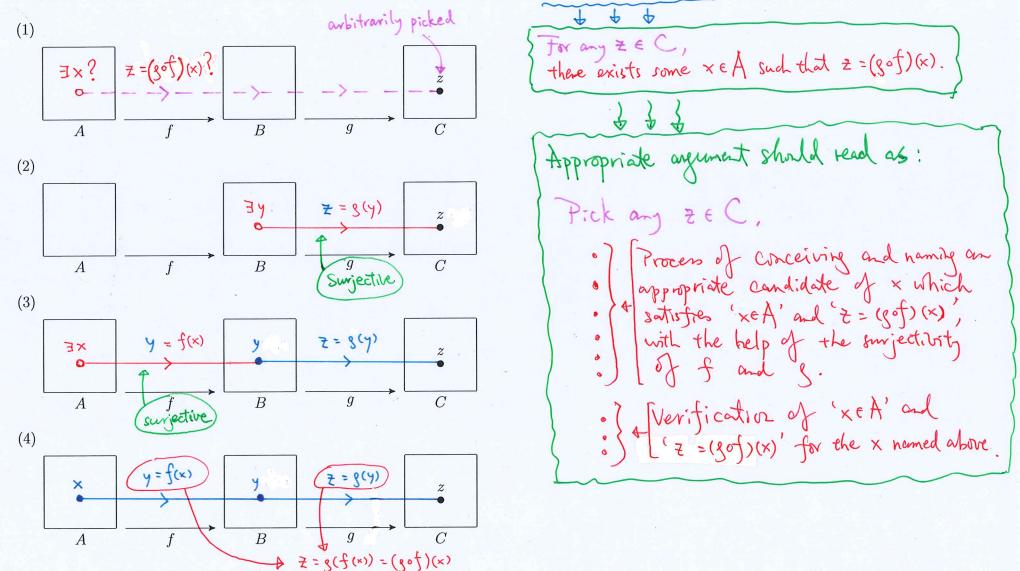
(1) Suppose f, g are surjective. Then $g \circ f$ is surjective.

(2) Suppose f, g are injective. Then $g \circ f$ is injective.

3. Proof of Statement (1) of Theorem (\sharp_1) .

Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions.

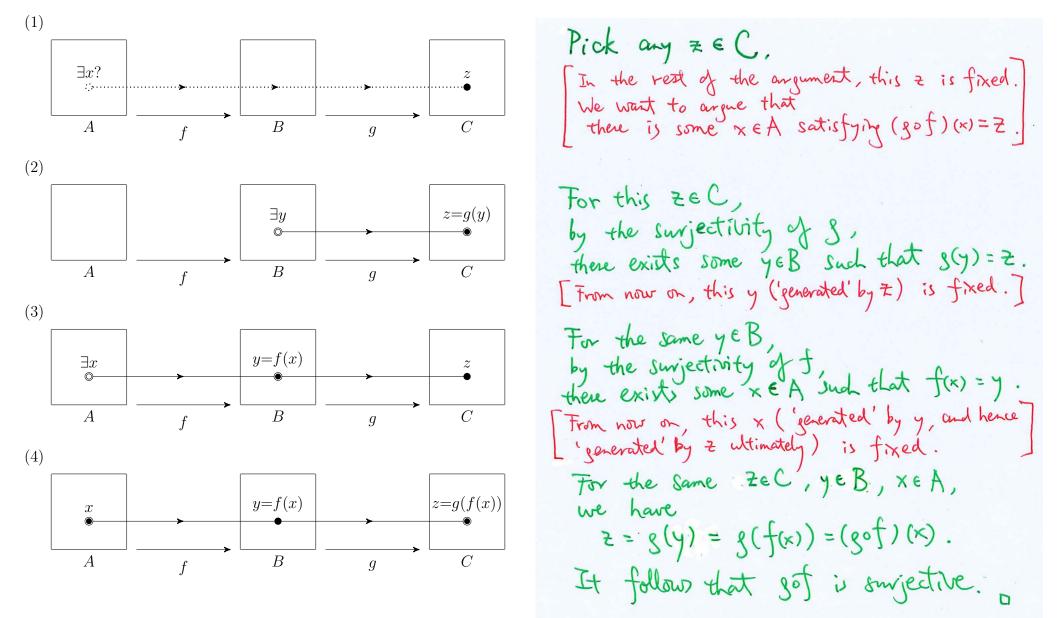
Suppose f, g are surjective. [We want to verify that $g \circ f$ is surjective under this assumption.]



Proof of Statement (1) of Theorem (\sharp_1) .

Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions.

Suppose f, g are surjective. [We want to verify that $g \circ f$ is surjective under this assumption.]



Proof of Statement (1) of Theorem (\sharp_1) (without pictures).

Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions.

Suppose f, g are surjective.

[We want to verify that $g \circ f$ is surjective under this assumption. By the definition of surjectivity, this is the same as verifying that for any $z \in C$, there exists some $x \in A$ such that $z = (g \circ f)(x)$.]

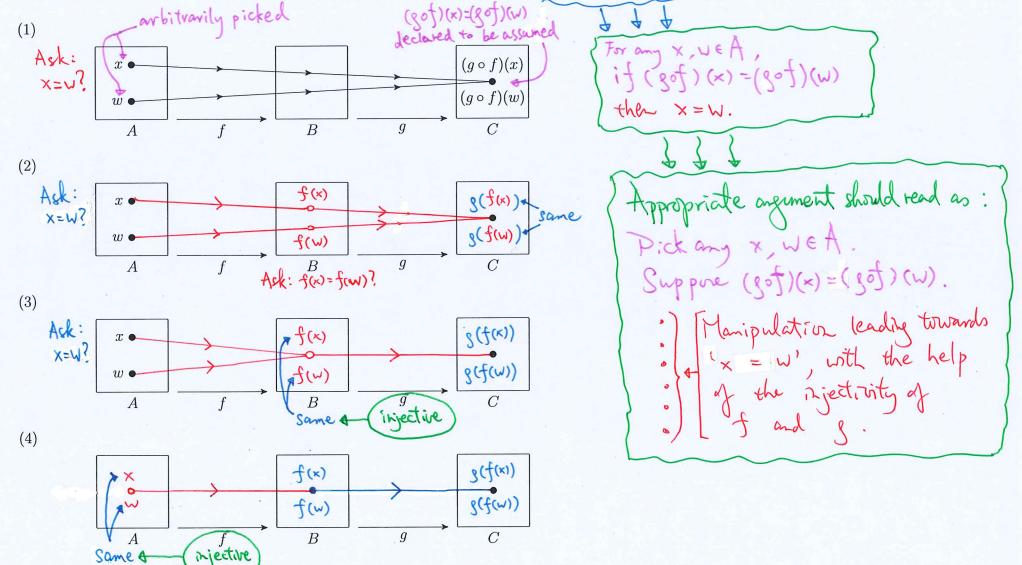
Pick any $z \in C$. [We want to argue that for this same z, there is some x satisfying $z = (g \circ f)(x)$.] For this $z \in C$, by the surjectivity of g, there exists some $y \in B$ such that z = g(y). For the same $y \in B$, by the surjectivity of f, there exists some $x \in A$ such that y = f(x). For the same $z \in C$, $x \in A$, we have $z = g(f(x)) = (g \circ f)(x)$.

It follows that $g \circ f$ is surjective.

4. Proof of Statement (2) of Theorem (\sharp_1) .

Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions.

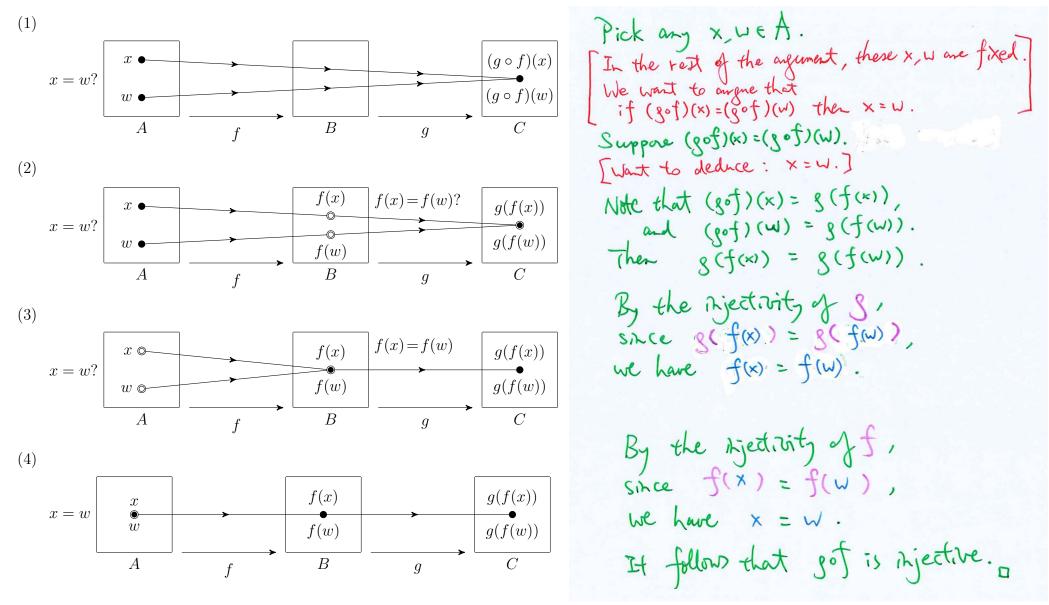
Suppose f, g are injective. [We want to verify that $g \circ f$ is injective under this assumption.]



Proof of Statement (2) of Theorem (\sharp_1) .

Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions.

Suppose f, g are injective. [We want to verify that $g \circ f$ is injective under this assumption.]



Proof of Statement (2) of Theorem (\sharp_1) (without pictures).

Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions.

Suppose f, g are injective.

[We want to verify that $g \circ f$ is injective under this assumption. By the definition of injectivity, this is the same as verify that for any $x, w \in A$, if $(g \circ f)(x) = (g \circ f)(w)$ then x = w.]

Pick any $x, w \in A$. [We want to argue that for the same x, w, if $(g \circ f)(x) = (g \circ f(w))$ then x = w.] Suppose $(g \circ f)(x) = (g \circ f)(w)$. Then g(f(x)) = g(f(w)). By the injectivity of g, since g(f(x)) = g(f(w)), we have f(x) = f(w). By the injectivity of f, since f(x) = f(w), we have x = w.

It follows that $g \circ f$ is injective.

5. Theorem (\sharp_2) .

Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. The following statements hold:

(1) Suppose $g \circ f$ is surjective. Then g is surjective.

(2) Suppose $g \circ f$ is injective. Then f is injective.

Proof of Theorem (\sharp_2) . Exercise.

Remark.

The statements below are false. Dis-prove each of them by giving a counter-example.

- (1) Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. Suppose $g \circ f$ is surjective. Then f is surjective.
- (2) Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. Suppose $g \circ f$ is injective. Then g is injective.

Further remark.

Which of the statements below are true? Which are false?

- (1) Let A, B be sets, and $f : A \longrightarrow B, g : B \longrightarrow A$ be functions. Suppose $g \circ f$ is surjective. Then $f \circ g$ is surjective.
- (2) Let A, B be sets, and $f : A \longrightarrow B, g : B \longrightarrow A$ be functions. Suppose $g \circ f$ is injective. Then $f \circ g$ is injective.
- (3) Let A be a set, and $f, g : A \longrightarrow A$ be functions. Suppose $g \circ f$ is surjective. Then $f \circ g$ is surjective.
- (4) Let A be a set, and $f, g : A \longrightarrow A$ be functions. Suppose $g \circ f$ is injective. Then $f \circ g$ is injective.