1. Example (1).

Let $f : \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $f(z) = z^2$ for any $z \in \mathbb{C}$.

Is f surjective? Yes. Justification:

* [What to verify? For any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $f(z) = \zeta$.] Pick any $\zeta \in \mathbb{C}$. Note that $\zeta = 0$ or $\zeta \neq 0$. (†) Suppose $\zeta = 0$. We have $0 \in \mathbb{C}$ and $f(0) = 0 = \zeta$. (‡) Suppose $\zeta \neq 0$. z2 = 5 [Try to name some appropriate $z \in \mathbb{C}$ satisfying $f(z) = \zeta$. Roughwork?] \mathfrak{g} There exits some de R such that Ronehwork $S = |S| \cdot (CD(\theta) + iSM(\theta))$ Solve the equation equation Z=3 numbrown z in C Take $z = \sqrt{|S|} \cdot (\cos\left(\frac{\partial}{2}\right) + i \sin\left(\frac{\partial}{2}\right))$. $J = |J| \cdot (con(\theta) + i sin(\theta))$ · By definition, ZE C. Z' = J $Z = \int |S| \cdot \left(\cos\left(\frac{\theta}{2}\right) + i \sin\left(\frac{\theta}{2}\right) \right) or...$ • Also, $f(z) = z^2 = \left[\sqrt{151} \cdot \left(\cos\left(\frac{\theta}{2}\right) + i \sin\left(\frac{\theta}{2}\right) \right) \right]^2$ $= 15 \left((\cos(\theta) + i\sin(\theta)) \right) = 5$

It follows that f is surjective.

Remark. Contrast the above result with this statement:

The function $p : \mathbb{R} \longrightarrow \mathbb{R}$ given by $p(x) = x^2$ for any $x \in \mathbb{R}$ is not surjective.

2. Example (2).

Let $g : \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $g(z) = z^3$ for any $z \in \mathbb{C}$. Is g injective? No. Justification:

* [What to verify? There exists some $z, w \in \mathbb{C}$ such that $z \neq w$ and g(z) = g(w).] [Try to name some appropriate distinct $z, w \in \mathbb{C}$ satisfying g(z) = g(w). Roughwork?] Take z = 1, w = 0, $\left(\frac{2\pi}{3}\right) + i \sin\left(\frac{2\pi}{3}\right)$. • \overline{z} , $w \in \mathbb{C}$ • $\overline{z} \neq w$. • $\{g(z) = \overline{z}^3 = 1^3 = 1$. Then $g(\overline{z}) = g(w)$. • $\{g(w) = w^3 = \dots = 1$. It follows that g is not njectore. Remark. Contrast the above result with this statement: • $g(w) = w^2$ is |w|. Remark. Contrast the above result with this statement:

The function $q: \mathbb{R} \longrightarrow \mathbb{R}$ given by $q(x) = x^3$ for any $x \in \mathbb{R}$ is injective.

3. Example (3).

Let $n \in \mathbb{N} \setminus \{0, 1\}$, and $h : \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $h(z) = z^n$ for any $z \in \mathbb{C}$.

Is h surjective? Is h injective?

- 4. Example (4).
 - Let $a, b \in \mathbb{C}$. Suppose $a \neq 0$. Define the function $f : \mathbb{C} \longrightarrow \mathbb{C}$ by f(z) = az + b for any $z \in \mathbb{C}$.
 - Is f surjective? Yes. Justification:
 - * [What to verify? For any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $f(z) = \zeta$.] Pick any $\zeta \in \mathbb{C}$. [Try to name some appropriate $z \in \mathbb{C}$ satisfying $f(z) = \zeta$. Roughwork?] Take $z = \frac{S-b}{a}$. By definition, $z \in \mathbb{C}$. Also, $f(z) = az + b = a + \frac{S-b}{a} + b = S$. It follows that f is surjective. Recuber the equation az + b = S. az + b = S az = S - b $z = \frac{S-b}{a}$.

Is f injective? Yes. Justification:

* [What to verify? For any $z, w \in \mathbb{C}$, if f(z) = f(w) then z = w.] Pick any $z, w \in \mathbb{C}$. Suppose f(z) = f(w). [Try to deduce z = w.] Then az+b = aw+b. Therefore az = aw. Hence z = w. If follows that f is injective.

5. Example (5).

Let $a, b, c \in \mathbb{C}$. Suppose $a \neq 0$. Define the function $f : \mathbb{C} \longrightarrow \mathbb{C}$ by $f(z) = az^2 + bz + c$ for any $z \in \mathbb{C}$.

Write $\gamma = -\frac{b}{2a}$, $\Delta = b^2 - 4ac$. Note that $f(z) = a(z - \gamma)^2 - \frac{\Delta}{4a}$ for any $z \in \mathbb{C}$. Is f surjective? Yes. Justification:

* [What to verify? For any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $f(z) = \zeta$.] $\alpha \left(\overline{z} - \overline{y} \right)^2 - \frac{\Delta}{\mu n} = \overline{y}$ Pick any $\zeta \in \mathbb{C}$. [Try to name some appropriate $z \in \mathbb{C}$ satisfying $f(z) = \zeta$. Roughwork?] Roughwork.Solve the quadratic equation $\alpha(z-x)^2 = 3 + \frac{\Delta}{4\alpha}$ with unknown $z \in \mathbb{C}$.Easy case: $S = -\frac{\Delta}{4\alpha}$.Less easy case: $S = -\frac{\Delta}{4\alpha}$. (†) Suppose $\zeta = -\frac{\Delta}{\Lambda a}$. Take $z = \gamma$. $\cdots f(z) = \cdots = \zeta$. (‡) Suppose $\zeta \neq -\frac{\Delta}{4a}$. Define $\alpha = \frac{1}{a}\left(\zeta + \frac{\Delta}{4a}\right)$. By definition, $\alpha \in \mathbb{C} \setminus \{0\}$. There exists some $\theta \in \mathbb{R}$ such that $\alpha = |\alpha|(\cos(\theta) + i\sin(\theta))$. Take $z = \gamma + \sqrt{|\alpha|} \cdot \left(\cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2}) \right)$. $\dots f(z) = \dots = \zeta$.

It follows that f is surjective.

Example (5).

Let $a, b, c \in \mathbb{C}$. Suppose $a \neq 0$. Define the function $f : \mathbb{C} \longrightarrow \mathbb{C}$ by $f(z) = az^2 + bz + c$ for any $z \in \mathbb{C}$.

Write $\gamma = -\frac{b}{2a}$, $\Delta = b^2 - 4ac$. Note that $f(z) = a(z - \gamma)^2 - \frac{\Delta}{4a}$ for any $z \in \mathbb{C}$. Is f injective?

No. Justification?

* [What to verify? There exist some $z, w \in \mathbb{C}$ such that $z \neq w$ and f(z) = f(w).] [Try to name some appropriate distinct $z, w \in \mathbb{C}$ satisfying f(z) = f(w). Roughwork?] $\begin{array}{c} \begin{array}{c} \mbox{Roughwork} \\ \hline \mbox{Ask}: \mbox{what happens when} \\ \hline \mbox{f(z) = f(w)} \\ \hline \mbox{f(z) = f(w)} \\ \hline \mbox{Now ask}: \mbox{Con we name some} \\ \hline \mbox{distinct } z, \mbox{we} \mbox{C satisfying} \\ \hline \mbox{lz = N^2 = (w-Y)^2} \\ \hline \mbox{lz = N^2 = [w-Y]^2} \\$ Take $z = \gamma + 1, w = \gamma - 1.$ Note that $z, w \in \mathbb{C}$ and $z \neq w$. $f(z) = a - \frac{\Delta}{Aa} = f(w).$ It follows that f is not injective.

Known by now : · Every 'Inear function from C to C' is both surjective and rejective. · Every 'quadratic function from C to C' D surjective and not injective. Question. How about cubic functions from C to C? Answer. • Let $a, b, c, d \in \mathbb{C}$. Suppose $a \neq 0$. Define the function $f: \mathbb{C} \to \mathbb{C}$ by $f(z) = az^3 + bz^2 + cz + d$ for any $z \in \mathbb{C}$. Then of is surjective and not rejective. Why? This is a consequence of the tesult below and the Factor Theorem. Cardeno - and - Tartaglia Theorem on cubic equations: · Let A; B, C, D be complex numbers : Suppose A to: Then the equation $A^{2}_{Z} + B^{2}_{Z} + C^{2}_{Z} + D = 0$ with unknown Z n C has at least one solution n C, given by the 'cubic formula"......" [Find out what it is by yourself.]

6. Polynomial functions on C.

We introduce these definitions:

- (a) Let $n \in \mathbb{N}$. A degree-*n* polynomial with complex coefficients and with indeterminate *z* is an expression of the form $a_n z^n + \cdots + a_1 z + a_0$ in which $a_0, a_1, \cdots, a_n \in \mathbb{C}$ and $a_n \neq 0$.
- (b) Let $f : \mathbb{C} \longrightarrow \mathbb{C}$ be a function. f is said to be a **degree-**n **polynomial function** (with complex coefficients) on \mathbb{C} if there exist some $a_0, a_1, \dots, a_n \in \mathbb{C}$ such that $a_n \neq 0$ and $f(z) = a_n z^n + \dots + a_1 z + a_0$ for any $z \in \mathbb{C}$.

The examples above are special cases of these results:

Theorem (1).

Let $n \in \mathbb{N} \setminus \{0, 1\}$. Every degree-*n* polynomial function on \mathbb{C} is surjective.

Theorem (2).

Let $n \in \mathbb{N} \setminus \{0, 1\}$. Every degree-*n* polynomial function on \mathbb{C} is not injective.

Polynomial functions on \mathbb{C} . Theorem (1). Let $n \in \mathbb{N} \setminus \{0, 1\}$. Every degree-*n* polynomial function on \mathbb{C} is surjective.

Theorem (2).

Let $n \in \mathbb{N} \setminus \{0, 1\}$. Every degree-*n* polynomial function on \mathbb{C} is not injective.

Theorem (1) is logically equivalent to the **Fundamental Theorem of Algebra**: Every non-constant polynomial with complex coefficient has a root in \mathbb{C} .

We can deduce Theorem (2) from Theorem (1) with the help of the **Factor Theorem** : Let $\alpha \in \mathbb{C}$, and p(z) be a degree-*n* polynomial (with complex coefficients). Suppose α is a root of p(z).

Then there is a degree-(n-1) polynomial q(z) (with complex coefficients) so that $p(z) = (z - \alpha)q(z)$ as polynomials.