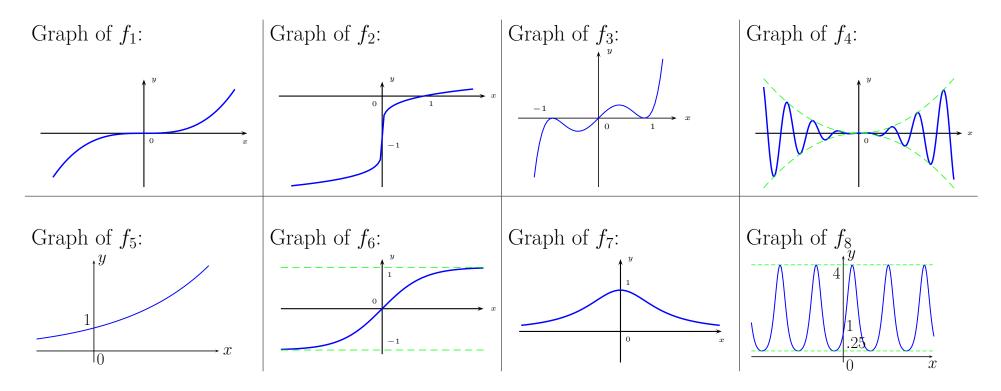
1. Let $f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8 : \mathbb{R} \longrightarrow \mathbb{R}$ be the functions defined by

$$f_1(x) = 0.1x^3, \quad f_2(x) = \sqrt[5]{x} - 1, \quad f_3(x) = x^5 - 2x^3 + x, \quad f_4(x) = 0.25x^2 \sin(10x),$$

$$f_5(x) = 1.3^x, \quad f_6(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad f_7(x) = \frac{1}{x^2 + 1}, \qquad f_8(x) = 4^{\sin(4x)}$$

for any $x \in \mathbb{R}$.

Rough sketches of the respective graphs of the above functions:



2. Which of f_1, \dots, f_8 is/are surjective? Which not?

• f_1, f_2, f_3, f_4 are surjective.

• f_5, f_6, f_7, f_8 are not surjective.

Question. How to see the answer for such functions from \mathbb{R} to \mathbb{R} ?

- Answer (b1). Inspect the graph of f_1, \dots, f_8 on the 'coordinate plane'.
- i = 1, 2, 3, 4. Why surjective? At each 'altitude' $b \in \mathbb{R}$, the horizontal line y = b cuts the graph of f_i at least once.

Some $x_b \in \mathbb{R}$ satisfies $y = f_i(x_b)$.

• i = 5, 6, 7, 8. Why not surjective? At some 'altitude' $b_0 \in \mathbb{R}$, the horizontal line $y = b_0$ cuts the graph of f_i nowhere.

No $x \in \mathbb{R}$ satisfies $b_0 = f_i(x)$.

Answer (b2). Re-interpret (b1) in terms of solving equations.

- i = 1, 2, 3, 4. Why surjective? For each $b \in \mathbb{R}$, the equation $b = f_i(u)$ with 'unknown' u in \mathbb{R} has at least one solution in \mathbb{R} .
- i = 5, 6, 7, 8. Why not surjective? There is some $b_0 \in \mathbb{R}$ for which the equation $b_0 = f(u)$ with 'unknown' u in \mathbb{R} has no solution in \mathbb{R} .

Answer (a). Directly verify the condition (S) or its negation respectively.

• i = 1, 2, 3, 4. Surjectivity? [Recall the statement (S).] VyER, DxER such that y=f(x). * How do we check the surjectivity of f_1 , in practice? > Pick any $y \in \mathbb{R}$. [This y is kept fixed in the discussion below.] [We name a candidate $x \in \mathbb{R}$ for which $y = f_1(x)$. An appropriate candidate is given by a solution of the equation $y = f_1(u)$ with unknown u in \mathbb{R} .] Roughwork: Solve y=f,(4) with unknown u n R. Take x = 3/10y. • By definition, $x \in \mathbb{R}$. • Also, $f_1(x) = 0.1 \times = 0.1 \left(\frac{3}{10y}\right)^3 = (0.1) \cdot (10y) = y$. It follows that f_1 is surjective. $y = 0.1 u^{3}$ $u^{3} = 10y$ u = 3/104 * How about f_2 ? [Exercise.] Roughwork: Solve y= f. (w) with unknown un R. Pick any yeR. Take $x = (y+1)^5$. By definition, $x \in \mathbb{R}$. Aliso, $f_2(x) = 5\sqrt{(y+1)^5} - 1 = (y+1) - 1^2 y$. $y = 5\pi - 1$ $5 \int u = 9 + 1$ $u = (9 + 1)^{5}$ It follows that fi is surjective.

Remark. Things are more difficult in practice for f_3 , f_4 , when we do not make use of the calculus. (Why?)

Answer (a). Directly verify the condition (S) or its negation respectively.

• i = 5, 6, 7, 8. Non-surjectivity? [Recall the statement $\sim(S)$.] * How do we check the non-surjectivity of f_8 , in practice? $\exists \gamma_0 \in \mathbb{R}$ such that $(\forall x \in \mathbb{R}, \gamma_0 \neq f_g(x))$. [Name a candidate $y_0 \in \mathbb{R}$ for which $y_0 \neq f_8(x)$ for any $x \in \mathbb{R}$. We are aware that for any $x \in \mathbb{R}, 4^{-1} \leq 4^{\sin(4x)} \leq 4$.] Take yo = 5.
 Note that yo ∈ R. • Pick any x & R. We have $f(x) = 4^{\sin(4x)} \le 4 < 5 = 7_{\circ}$. Hence yo + fo (x). It follows that f_8 is not surjective. * How about f_6 ? $\begin{bmatrix} R \text{sughwork} : & \text{Observe that for any x \in \mathbb{R}}, \\ |f_{i}(x)| = \left| \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \right| = \frac{|e^{x} - e^{-x}|}{e^{x} + e^{-x}} \leq \frac{|e^{x}| + |e^{-x}|}{e^{x} + e^{-x}} = |.$ Take y, = 2. . Note that $y_0 \in \mathbb{R}$. - Pick any $x \in \mathbb{R}$. We have $|f_0(x)| = |\frac{e^x - e^x}{e^x + e^x}| \le |< 2 = y_0$. Then $f_0(x) \neq y_0$. It follows that f_0 is not surjective. * How about f_5, f_7 ? [Exercise.]

3. Which of f_1, \dots, f_8 is/are injective? Which not?

• f_1, f_2, f_5, f_6 are injective.

• f_3, f_4, f_7, f_8 are not injective.

Question. How to see which is injective and which not, for such a real-valued function of one real variable?

Answer (b1). Inspect the graph of f_1, \dots, f_8 .

• i = 1, 2, 5, 6. Why injective? At each 'altitude' $b \in \mathbb{R}$, the horizontal line y = b cuts the graph of f_i at most once: no two distinct x, w satisfy $f_i(x) = f_i(w)$.

• i = 3, 4, 7, 8. Why not injective? At some 'altitude' $b_0 \in \mathbb{R}$, the horizontal line $y = b_0$ cuts the graph of f_i twice or more: some distinct x, w satisfy $f_i(x) = f_i(w)$. **Answer (b2)**. We re-interpret (b1) in terms of solving equations.

- i = 1, 2, 5, 6. Why injective? For each $b \in \mathbb{R}$, the equation $b = f_i(u)$ with 'unknown' u in \mathbb{R} has at most one solution in \mathbb{R} .
- i = 3, 4, 7, 8. Why not injective? There is some value $b_0 \in \mathbb{R}$ for which the equation $b_0 = f_i(u)$ with 'unknown' u in \mathbb{R} has two or more solutions in \mathbb{R} .

Answer (a). Directly verify the condition (I) or its negation respectively.

- i = 1, 2, 5, 6. Injectivity? [Recall the statement (I).]
 - * How do we check the injectivity of f_6 , in practice? $\forall x, w \in \mathbb{R}$, $(f) f_6(x) = f_6(w)$ then x = w.
 - Pick any $x, w \in \mathbb{R}$. [These x, w are fixed in the discussion below. We verify that if $f_{\boldsymbol{\xi}}(x) = f_{\boldsymbol{\xi}}(w)$ then x = w.]
 - If $J_{e}(x) = J_{e}(x)$. Suppose f(x) = f(w). Then $\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{e^{w} - e^{-w}}{e^{w} + e^{-w}}$. Therefore $e^{x+w} + e^{x-w} - e^{-x+w} - e^{-x-w} = (e^{x} - e^{-x})(e^{w} + e^{-w}) = (e^{x} + e^{-x})(e^{w} - e^{-w})$ Hence $2e^{x+w} - e^{x+w} - e^{-x+w}$. Then x-w = -x+w. We have $x \ge w$. It follows that f_{e} is injective. p * How about f_{1} ?

Pick any
$$x, w \in \mathbb{R}$$
. Suppose $f_{i}(w) = f_{i}(w)$.
Then $0.1x^{3} = 0.1w^{3}$.
Therefore $(x - w)(x^{2} + xw + w^{2}) = x^{3} - w^{3} = 0$.
 $\vdots \quad [your work.]$
Hence $x = w$.
It follows that f_{i} is injective.
How about f_{2}, f_{5} ? [Exercise.]

* F

Answer (a). Directly verify the condition (I) or its negation respectively.

• i = 3, 4, 7, 8. Non-injectivity? [Recall the statement $\sim(I)$.] How do we check the non-injectivity of f_7 , in practice? $\exists x_0, w_0 \in \mathbb{R}$ such that $x_0 \neq w_0$ and $f_1(x_0) = f_1(w_0)$.

[Name $x_0, w_0 \in \mathbb{R}$ for which $x_0 \neq w_0$ and $f_7(x_0) = f_7(w_0)$. Try this roughwork: Start with the 'relation' $f_7(x_0) = f_7(w_0)$ ' to see what may prevent us from obtaining ' $x_0 = w_0$ '.]

$$\begin{array}{c} \boxed{\text{Take} \quad \chi_{\circ} = \frac{1}{2}, \quad W_{\circ} = -\frac{1}{2}, \\ \hline & \chi_{\circ}, \quad W_{\circ} \in \mathbb{R}, \\ \hline & \chi_{\circ}, \quad W_{\circ} \in \mathbb{R}, \\ \hline & \chi_{\circ}, \quad \psi_{\circ} = \frac{1}{1}, \\ \hline & \chi_{\circ}, \quad \psi_{\circ} = \frac{1}{1 + (\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & f_{1}(\chi_{\circ}) = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & f_{1}(\chi_{\circ}) = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \psi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \psi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (-\frac{1}{2})^{2}} = \frac{4}{5}, \\ \hline & \chi_{\circ}, \quad \chi_{\circ} = \frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{1}{1 + (\chi_{\circ})^{2}} = -\frac{$$

How about f_3, f_4, f_8 ? [Exercise.]