- 1. (a) $[(P \to Q) \land P] \to Q$ is true irrespective of the truth values of P, Q. Hence it is a tautology.
 - (b) $[(P \to Q) \land Q] \to P$ is a contingent statement. It is true when P, Q are both true. It is false when P is false and Q is true.
- 2. (a) The statements $P \to (Q \land R)$, $(P \to Q) \land (P \to R)$ are logically equivalent.
 - (b) The statements $P \to (Q \to R)$, $(P \land Q) \to R$ are logically equivalent.
 - (c) The statements $P \to (Q \lor R)$, $(P \to Q) \lor (P \to R)$ are logically equivalent.
 - (d) The statements $(P \lor Q) \to R$, $(P \to R) \land (Q \to R)$ are logically equivalent.
 - (e) The statements $(P \to Q) \to R$, $P \to (Q \to R)$ are not logically equivalent.
 - (f) The statements $P \to (Q \lor R)$, $[P \land (\sim Q)] \to R$ are logically equivalent.
- 3. (a) The statement $(P \to R) \to [(P \to Q) \land (Q \to R)]$ is neither a tautology nor a contradiction; it is a contingent statement.
 - (b) The statement $[P \to (P \to Q)] \to (P \to Q)$ is a tautology.
 - (c) The statement $(P \to R) \to [(P \land Q) \to R)]$ is a tautology.
 - (d) The statement $[(P \to Q) \land (Q \to R)] \to (P \to R)$ is a tautology.
 - (e) The statement $[(P \to Q) \land (Q \to R) \land (R \to P)] \to (Q \to P)$ is a tautology.
 - (f) The statement $(P \to R) \to [(P \to Q) \lor (Q \to R)]$ is a tautology.
 - (g) The statement $(P \to Q) \to [(Q \to R) \lor (P \land R)]$ is neither a tautology nor a contradiction; it is a contingent statement.
 - (h) The statement $(P \to Q) \to [(P \to R) \lor (Q \to R)]$ is neither a tautology nor a contradiction; it is a contingent statement.
- 4. (a) There exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exists some $x \in \mathbb{R}$ such that $0 < |x a| < \delta$ and $|f(x) - \ell| \ge \varepsilon$.
 - (b) For any $\ell \in \mathbb{R}$, there exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exists some $x \in \mathbb{R}$ such that $0 < |x a| < \delta$ and $|f(x) \ell| \ge \varepsilon$.
 - (c) There exists some $a \in \mathbb{R}$ such that for any $\ell \in \mathbb{R}$, there exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$ there exists some $x \in \mathbb{R}$ such that $0 < |x a| < \delta$ and $|f(x) \ell| \ge \varepsilon$.
 - (d) There exists some $a \in \mathbb{R}$, $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exists some $x \in \mathbb{R}$ such that $|x-a| < \delta$ and $|f(x) - f(a)| \ge \varepsilon$.
 - (e) There exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$ there exists some $x, a \in \mathbb{R}$ such that $|x a| < \delta$ and $|f(x) - f(a)| \ge \varepsilon$.
 - (f) There exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exist some $x, a \in \mathbb{R}$ such that $|x a| < \delta$ and $|f(x) f(a)| \ge \varepsilon$.

Remark. The given statement to be negated is:

'For any $a \in \mathbb{R}$, for any $\varepsilon \in (0, +\infty)$, there exists some $\delta \in (0, +\infty)$ independent of the choice of a such that for any $x \in \mathbb{R}$, if $|x - a| < \delta$ then $|f(x) - f(a)| < \varepsilon$.'

In light of the presence of the words 'independent of the choice of a' appending 'there exists some δ ', the given statement should be understood as:

'For any $\varepsilon \in (0, +\infty)$, there exists some $\delta \in (0, +\infty)$ such that for any $a \in \mathbb{R}$, for any $x \in \mathbb{R}$, if $|x - a| < \delta$ then $|f(x) - f(a)| < \varepsilon$.'

- 5. (a) There exist some (4×4) -matrices with real entries A, B such that $A^2 + B^2 = AB$ and (for any $p, q \in \mathbb{R}$, $pA + qB \neq BA$).
 - (b) For any (4×4) -matrices with real entries A, B, there exists some $p, q \in \mathbb{R}$ such that pA + qB = AB and $(pA^2 + qB^2 \neq A^2B^2 \text{ or } pA^3 + qB^3 \neq B^2A^2)$.
 - (c) There exist some (4×4) -matrices with real entries A, B such that A + B is non-singular and (there exists some $p \in \mathbb{R}$ such that for any $q \in \mathbb{R}$, $pA + qB \neq AB$).

- (d) For any (4×4) -matrices with real entries A, B, (there exist some $p, q \in \mathbb{R}$ such that $pA + qB \neq AB$) or (there exist some $s, t \in \mathbb{R}$ such that $sA^2 + tB^2 \neq A^2B^2$.
- (e) There exist some (4×4) -matrices with real entries A, B such that (for any $p, q \in \mathbb{R}, pA + qB$ is singular) and (there exist some $r, s \in \mathbb{R}$ such that $rA^2 + sB^2$ is non-singular).
- (f) There exist some (4×4) -matrices with real entries A, B such that (for any $p, q \in \mathbb{R}$, if pA + qB is singular then $pA^2 + qB^2$ is non-singular) and (there exist some $r, s \in \mathbb{R}$ such that $rA^2 + sB^2$ is singular and rA + sB is non-singular).
- 6. (a) False.
 - (b) True.
 - (c) True.
 - (d) True.
 - (e) True.
 - (f) False.
 - (g) False.
 - (h) False.
 - (i) False.
 - (j) False.
 - (k) False.
 - (l) True.
- 7. (a) True.
 - (b) True.
 - (c) False.
 - (d) True.
 - (e) False.
 - (f) True.
 - (g) False.
 - (h) False.
 - (i) True.
 - (j) True.
 - (k) True.

Hint. Start with a concrete prime number, say, 5. Ask: Is $(\sqrt{5})^{\sqrt{5}}$ rational or irrational? If it is irrational, how about $[(\sqrt{5})^{\sqrt{5}}]^{\sqrt{5}}$?

- (l) False.
- (m) False.
- (n) False.
- (o) False.
- (p) False.
- (q) False.
- (r) True.
- (s) False.
- (t) True.