- 1. Prove the statements below, with reference to the definitions of set equality, subset relation, intersection, union, complement, where appropriate.
 - (a) Suppose A, B are sets. Then $A \cap B \subset A$.
 - (b) Suppose A, B are sets. Then $A \subset A \cup B$.
 - (c) Suppose A, B, C are sets. Then $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.
 - (d) Suppose A, B, C are sets. Then $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
 - (e) Suppose A, B, C are sets. Then $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$.
 - (f) Suppose A, B, C are sets. Then $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$.
- 2. Prove the statements below. Where appropriate, you may apply results concerned with the properties of the set operations 'intersection', 'union' and 'complement'.
 - (a) Suppose A, B are sets. Then $A \triangle B = (A \cup B) \setminus (A \cap B)$.
 - (b) Suppose A, B are sets. Then $A \triangle B = B \triangle A$.
 - (c) Suppose A, B, C are sets. Then $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.
 - (d) Suppose A, B, C be sets. Then $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.
- 3. Let A, B be sets. Prove that the statements below are logically equivalent, with reference to the definitions of set equality, subset relation, intersection, union, complement, where appropriate:
 - (I) $A \subset B$. (II) $A \cap B = A$. (III) $A \cup B = B$.
- 4. (a) Prove the statements below, with reference to the definitions of set equality, subset relation, intersection, union, complement, where appropriate.
 - i. Let A, B, T be sets. Suppose $A \subset T$ and $B \subset T$. Then $A \cup B \subset T$.
 - ii. Let A, B, T be sets. Suppose $A \subset T$ or $B \subset T$. Then $A \cap B \subset T$.
 - (b) Consider each of the statements below. For each of them, determine whether it is true or false. Justify your answer by giving a proof or constructing a counter-example where appropriate.
 - i. Let A, B, T be sets. Suppose $A \cup B \subset T$. Then $A \subset T$ and $B \subset T$.
 - ii. Let A, B, T be sets. Suppose $A \cap B \subset T$. Then $A \subset T$ or $B \subset T$.
 - iii. Let A, B, T be sets. Suppose $A \subset T$ or $B \subset T$. Then $A \cup B \subset T$.
- 5. Consider each of the statements below. In each case, determine whether it is true or false. Justify your answer by giving an appropriate argument.
 - (a) Let A, B, C be sets. Suppose $A \cup (B \cap C) = (A \cup B) \cap C$. Then $A \subset C$.
 - (b) Suppose A, B, C are sets. Then $A \setminus (B \setminus C) = (A \setminus B) \setminus C$.
 - (c) Suppose A, B are sets. Then $(A \cup B) \setminus A = B \setminus (A \cap B)$.
 - (d) Suppose A, B, C are sets. Then $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$.
 - (e) Let A, B, C be sets. Suppose $A \subset B$. Then $C \setminus A \subset C \setminus B$.
 - (f) Let A, B, C be sets. Suppose $A \subset B$ and $A \notin C$. Then $B \notin C$.
 - (g) Let A, B, C be non-empty sets. Suppose $A \subset B$ and $B \notin C$. Then $A \notin C$.
 - (h) Let A, B, C be non-empty sets. Suppose $A \subset B$ and $B \not\subset C$. Then $A \not\subset C$.
 - (i) Suppose A, B, C are sets. Then $A \cup (B \triangle C) = (A \triangle B) \cup (A \triangle C)$.
 - (j) Suppose A, B, C are sets. Then $A \cap (B \triangle C) = (A \triangle B) \cap (A \triangle C)$.
- 6. (a) Prove the statements below, with reference to the definitions of set equality, subset relation, intersection, union, complement, where appropriate.

i. Let E be a set, and A, B be subsets of E. Suppose $A \subset B$. Then $E \setminus B \subset E \setminus A$.

ii. Let E be a set, and A, B be subsets of E. Suppose $A \subsetneqq B$. Then $E \setminus B \subsetneqq E \setminus A$.

- (b) Consider each of the statements below. For each of them, determine whether it is true or false. Justify your answer by giving a proof or constructing a counter-example where appropriate.
 - i. Let A, B, E be a set. Suppose $A \subset B$. Then $E \setminus B \subset E \setminus A$.
 - ii. Let A, B, E be a set. Suppose $A \subsetneq B$. Then $E \setminus B \subsetneq E \setminus A$.
- 7. (a) Consider each of the statements below. For each of them, determine whether it is true or false. Justify your answer by giving a proof or constructing a counter-example where appropriate.
 - i. Suppose A, B are sets. Then $B \setminus (B \setminus A) \subset A$.
 - ii. Suppose A, B are sets. Then $A \subset B \setminus (B \setminus A)$.
 - (b) Prove the statements below:
 - i. Suppose A, B be sets. Then $A \subset B \setminus (B \setminus A)$ iff $A \subset B$.
 - ii. Suppose A, B be sets. Then $B \setminus (B \setminus A) = A$ iff $A \subset B$.
 - iii. Suppose A, B be sets. Then $B \setminus (B \setminus A) \subsetneq A$ iff $A \notin B$.
- 8. (a) Consider each of the statements below. For each of them, construct an appropriate counter-example to illustrate that it is false.
 - i. Let A, B be sets. Suppose $A \cap B = \emptyset$. Then $\mathfrak{P}(A \cup B) \subset \mathfrak{P}(A) \cup \mathfrak{P}(B)$.
 - ii. Let A, B be sets. Suppose A, B are non-empty. Then $\mathfrak{P}(A \cup B) \subset \mathfrak{P}(A) \cup \mathfrak{P}(B) \cup \mathfrak{P}(A \cap B)$.
 - (b) Prove the statements below:
 - i. Let A, B be sets. Suppose $\mathfrak{P}(A \cup B) \subset \mathfrak{P}(A) \cup \mathfrak{P}(B)$. Then $(A \subset B \text{ or } B \subset A)$.
 - ii. Let A, B be sets. Suppose $(A \subset B \text{ or } B \subset A)$. Then $\mathfrak{P}(A \cup B) \subset \mathfrak{P}(A) \cup \mathfrak{P}(B)$.
- 9. Prove the statements below:
 - (a) Suppose A, B are sets. Then $\mathfrak{P}(A \setminus B) \subset (\mathfrak{P}(A) \setminus \mathfrak{P}(B)) \cup \{\emptyset\}$.
 - (b) Let A, B be sets. Suppose $(A \subset B \text{ or } A \cap B = \emptyset)$. Then $\mathfrak{P}(A) \setminus \mathfrak{P}(B) \subset \mathfrak{P}(A \setminus B)$.
 - (c) Let A, B be sets. Suppose $\mathfrak{P}(A) \setminus \mathfrak{P}(B) \subset \mathfrak{P}(A \setminus B)$. Then $(A \subset B \text{ or } A \cap B = \emptyset)$.
- 10. Dis-prove each of the statements below.
 - (a) Suppose A, B are sets. Then $\mathfrak{P}(A \triangle B) \subset (\mathfrak{P}(A) \triangle \mathfrak{P}(B)) \cup \{\emptyset\}.$
 - (b) Suppose A, B are sets. Then $\mathfrak{P}(A \triangle B) \not\subset (\mathfrak{P}(A) \triangle \mathfrak{P}(B)) \cup \{\emptyset\}$.

Remark. Note that these two statements are not negations of each other. (The statement $\sim ((\forall x)(\forall y)P(x,y))$ is not the equivalent to the statement $(\forall x)(\forall y)(\sim P(x,y))$.)

11. Let M be a set, and $\{A_n\}_{n=0}^{\infty}, \{B_n\}_{n=0}^{\infty}$ be infinite sequences of subsets of M.

Define

$G = \{ x \in M : x \in A_n \text{ for any } n \in \mathbb{N} \},\$	$H = \{ x \in M : x \in A_n \text{ for some } n \in \mathbb{N} \},\$
$I = \{ x \in M : x \in B_n \text{ for any } n \in \mathbb{N} \},\$	$J = \{ x \in M : x \in B_n \text{ for some } n \in \mathbb{N} \}.$

Prove the statements below:

- (a) Suppose $A_n \subset B_n$ for any $n \in \mathbb{N}$. Then $G \subset I$ and $H \subset J$.
- (b) Suppose $K = \{x \in M : x \in A_m \cap B_n \text{ for some } m, n \in \mathbb{N}\}$. Then $K = H \cap J$.
- (c) Suppose $L = \{x \in M : x \in A_m \cup B_n \text{ for any } m, n \in \mathbb{N}\}$. Then $L = G \cup I$.