MATH1050 Examples: Logical connectives, quantifiers, negations and dis-proofs.

- 1. (a) Let P, Q be statements. Verify that the statement $[(P \to Q) \land P] \to Q$ is a tautology by drawing an appropriate truth table.
 - (b) Let P, Q be statements. Consider the statement $[(P \to Q) \land Q] \to P$. Determine whether it is a tautology, or a contradiction, or a contingent statement. Justify your answer by drawing an appropriate truth table.
- 2. Let P, Q, R be statements. Consider each of the pairs of statements below. Determine whether the statements are logically equivalent. Justify your answer by drawing an appropriate truth table.
 - (a) $P \to (Q \land R), (P \to Q) \land (P \to R).$

(b)
$$P \to (Q \to R), (P \land Q) \to R.$$

- (c) $P \to (Q \lor R), \ (P \to Q) \lor (P \to R).$
- (d) $(P \lor Q) \to R, (P \to R) \land (Q \to R).$
- (e) $(P \to Q) \to R, P \to (Q \to R).$
- (f) $P \to (Q \lor R), [P \land (\sim Q)] \to R.$
- 3. Let P, Q, R be statements. Consider each of the statements below. Determine whether it is a tautology or a contradiction or a contingent statement. Justify your answer by drawing an appropriate truth table.
 - (a) $(P \to R) \to [(P \to Q) \land (Q \to R)]$

(b)
$$[P \to (P \to Q)] \to (P \to Q)$$

- (c) $(P \to R) \to [(P \land Q) \to R)]$
- (d) $[(P \to Q) \land (Q \to R)] \to (P \to R)$
- (e) $[(P \to Q) \land (Q \to R) \land (R \to P)] \to (Q \to P)$
- (f) $(P \to R) \to [(P \to Q) \lor (Q \to R)]$
- (g) $(P \to Q) \to [(Q \to R) \lor (P \land R)]$
- (h) $(P \to Q) \to [(P \to R) \lor (Q \to R)]$
- 4. Consider each of the statements below. (Do not worry about the mathematical content.) Write down its negation in such a way that the word 'not' does not explicitly appear.
 - (a) For any $\varepsilon \in (0, +\infty)$, there exists some $\delta \in (0, +\infty)$ such that for any $x \in \mathbb{R}$, if $0 < |x-a| < \delta$ then $|f(x) \ell| < \varepsilon$.
 - (b) There exists some $\ell \in \mathbb{R}$ such that for any $\varepsilon \in (0, +\infty)$, there exists some $\delta \in (0, +\infty)$ such that for any $x \in \mathbb{R}$, if $0 < |x a| < \delta$ then $|f(x) \ell| < \varepsilon$.
 - (c) For any $a \in \mathbb{R}$, there exists some $\ell \in \mathbb{R}$ such that for any $\varepsilon \in (0, +\infty)$, there exists some $\delta \in (0, +\infty)$ such that for any $x \in \mathbb{R}$, if $0 < |x a| < \delta$ then $|f(x) \ell| < \varepsilon$.
 - (d) For any $a \in \mathbb{R}$, for any $\varepsilon \in (0, +\infty)$, there exists some $\delta \in (0, +\infty)$ such that for any $x \in \mathbb{R}$, if $|x a| < \delta$ then $|f(x) f(a)| < \varepsilon$.
 - (e) For any $\varepsilon \in (0, +\infty)$, there exists some $\delta \in (0, +\infty)$ such that for any $x, a \in \mathbb{R}$, if $|x-a| < \delta$ then $|f(x) f(a)| < \varepsilon$.
 - (f) For any $a \in \mathbb{R}$, for any $\varepsilon \in (0, +\infty)$, there exists some $\delta \in (0, +\infty)$ independent of the choice of a such that for any $x \in \mathbb{R}$, if $|x a| < \delta$ then $|f(x) f(a)| < \varepsilon$.
- 5. Consider each of the statements below. (Do not worry about the mathematical content.) Write down its negation in such a way that the word '*not*' does not explicitly appear.
 - (a) For any (4×4) -matrices with real entries A, B, if $A^2 + B^2 = AB$ then there exist some $p, q \in \mathbb{R}$ such that pA + qB = BA.
 - (b) There exist some (4×4) -matrices with real entries A, B such that for any $p, q \in \mathbb{R}$, if pA + qB = AB then $(pA^2 + qB^2 = A^2B^2 \text{ and } pA^3 + qB^3 = B^2A^2$.
 - (c) Let A, B be (4×4) -matrices with real entries. Suppose A + B is non-singular. Then for any $p \in \mathbb{R}$, there exists some $q \in \mathbb{R}$ such that pA + qB = AB.

- (d) There exist some (4×4) -matrix with real entries A, B such that (for any $p, q \in \mathbb{R}, pA + qB = AB$) and (for any $s, t \in \mathbb{R}, sA^2 + tB^2 = A^2B^2$).
- (e) Let A, B be (4×4) -matrices with real entries. Suppose that for any $p, q \in \mathbb{R}$, pA + qB is singular. Then for any $r, s \in \mathbb{R}$, $rA^2 + sB^2$ is singular.
- (f) Let A, B be (4×4) -matrices with real entries. Suppose that for any $p, q \in \mathbb{R}$, if pA+qB is singular then pA^2+qB^2 is non-singular. Then for any $r, s \in \mathbb{R}$, if $rA^2 + sB^2$ is singular then rA + sB is non-singular.
- 6. Consider each of the statements below. For each of them, determine whether it is true or false. Justify your answer by giving an appropriate argument.
 - (a) Let $a, b, c, d \in \mathbb{R}$. Suppose a > b and c > d. Then a c > b d.
 - (b) Let n be a positive integer. Let x, y be distinct positive real numbers. $x^{2n} + y^{2n} > x^{2n-1}y + xy^{2n-1}$.
 - (c) There exist some $z, w \in \mathbb{C}$ such that $z^4 = w^4 = -1$ and $z w \in \mathbb{R} \setminus \{0\}$.
 - (d) There exist some $x, y \in \mathbb{R}$ such that $(x+y)^2 = x^2 + y^2$.
 - (e) There exist some $x, y \in \mathbb{R} \setminus \{0\}$ such that $x^3 + y^3 = (x + y)^3$.
 - (f) There exist some $x, y \in \mathbb{R} \setminus \{0\}$ such that $x^4 + y^4 = (x + y)^4$.
 - (g) There exists some $x \in \mathbb{R}$ such that $x^8 + x^4 + 1 = 2x^2$.
 - (h) There exist some $a, b \in \mathbb{R} \setminus \{0\}$ such that $\sqrt{a^2 + b^2} = \sqrt[3]{a^3 + b^3}$.
 - (i) There exist some $x, y \in \mathbb{R}$ such that $|x^2 + iy^2| < |xy|$.
 - (j) There exists some $z \in \mathbb{C} \setminus \{0\}$ such that $\left|z + \frac{1}{\overline{z}}\right| < \left|z \frac{1}{\overline{z}}\right|$.
 - (k) There exist some $x, y, p, s, t \in \mathbb{R}$ such that $|x p| \le s$ and $|y + p| \le t$ and |x + y| > s + t.
 - (1) For any $\alpha \in \mathbb{C} \setminus \{0\}$, if $\alpha^2 / \overline{\alpha}^2$ is a positive real number then (α is real or α is purely imaginary).
- 7. Consider each of the statements below. For each of them, determine whether it is true or false. Justify your answer by giving an appropriate argument.
 - (a) Let $x, n \in \mathbb{Z}$. Suppose x is divisible by n. Then for any $y \in \mathbb{Z}$, $(x+y)^3 + (x-y)^3$ is divisible by 2n.
 - (b) Let $m, n \in \mathbb{Z}$. Suppose $m \equiv 1 \pmod{2}$ and $n \equiv 3 \pmod{4}$. Then $m^2 + n$ is divisible by 4.
 - (c) There exists some $x \in \mathbb{Z}$ such that $x \equiv 5 \pmod{14}$ and $x \equiv 3 \pmod{21}$.
 - (d) Let p, q be distinct positive prime numbers. $\frac{p+q}{pq}$ is not an integer.
 - (e) There exists some $n \in \mathbb{Z}$ such that $n^3 + n^2 + 2n$ is odd.
 - (f) Let x be a positive real number. Suppose x is an irrational number. Then, for any $n \in \mathbb{N}$, $t \in \mathbb{Q}$, if $n \ge 2$ then $\sqrt[n]{x+t^2}$ is an irrational number.
 - (g) Let $s, t \in \mathbb{R}$. Suppose s, t are distinct irrational numbers. Then st is an irrational number.
 - (h) Let $x, y, z \in \mathbb{N}$. Suppose x > y > z and x is not divisible by y and y is not divisible by z. Then x is not divisible by z.
 - (i) There exist some $a, b \in \mathbb{R}$ such that a is irrational and b, a^b are rational.
 - (j) There exist some $a, b \in \mathbb{R}$ such that b is irrational and a, a^b are rational.
 - (k) There exist some $a, b \in \mathbb{R}$ such that a, b are irrational and a^b is rational.
 - (1) Suppose $n \in \mathbb{N}$. Then gcd(n, n+2) = 2.
 - (m) Let $x, y, z \in \mathbb{Z}$. Suppose gcd(x, y) > 1 and gcd(y, z) > 1. Then gcd(x, z) > 1.
 - (n) Let $m, n, k \in \mathbb{Z}$. Suppose m + n is divisible by k. Then m is divisible by k or n is divisible by k.
 - (o) There exists some $m, n \in \mathbb{Z}$ such that m n is divisible by 2 and $m^2 n^2$ is not divisible by 4.
 - (p) There exists some $n \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ such that n is even and $2^n 1$ is a prime number.
 - (q) Let $x, y, z \in \mathbb{N}$. Suppose x > yz and y > z. Further suppose x is divisible by y and x is divisible by z. Then x is divisible by yz.
 - (r) Let $a, b \in \mathbb{Z}$. Suppose a is even and b is odd. Then $a^2 + 2b^2$ is not divisible by 4.
 - (s) here exist some distinct positive prime numbers p, q such that $\sqrt{p} + \sqrt{q}$ is rational.
 - (t) There exists some $n \in \mathbb{N}$ such that n is a prime number and $n > 2^{100}$.