


2. Universal quantifier, as the ‘generalization’ of ‘and’.
Non-mathematical example.
• ‘Every dog has a tail.’
• ‘For any dog x, x has a tail.’
• ‘For any object x, (if x is a dog then x has a tail).’

These three sentences mean the same thing. Heuristically, what we mean is:
‘Dog α has a tail, and Dog β has a tail, and Dog γ has a tail, and ..., and Dog ω

has a tail, and ...’.
We will very soon be tired with so many ‘and’; hence we say

‘every dog has a tail’.
The words ‘for any’, ‘for all’, ‘every’, ‘each’, ... indicate the presence of the
universal quantifier.
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3. Existential quantifier, as the ‘generalization’ of ‘or’.
Non-mathematical example.
• ‘Some dogs have black hair.’
• ‘There is at least one dog with black hair.’
• ‘There is some dog x so that x has black hair.’
• ‘There exists some dog x such that x has black hair.’
• ‘There exists some object x such that (x is a dog and x has black hair).’

These five sentences mean the same thing. Heuristically, what we mean is:
‘Dog α has black hair, or Dog β has black hair, or Dog γ has black hair, or ..., or
Dog ω has black hair, or ...’.

We will very soon be tired with so many ‘or’; hence we say
‘some dog has black hair’.

The words ‘there exist (some)’, ‘there is/are (some)’, ‘for some’, ‘some’,
‘at least one’, ‘there is at least one’ indicate the presence of the existential
quantifier.
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5. Truth-hood of a statement of the form (∃x)P (x), and verification of
such a statement.
The statement ‘(∃x)P (x)’ is true exactly when:

one object x0 can be specified to make the statement P (x0) a true statement.

Recall that the statements below are the same:
‘(∃x ∈ S)Q(x)’, ‘(∃x)((x ∈ S) ∧Q(x))’.

We accept that the statement ‘(∃x ∈ S)Q(x)’ is true exactly when:
• one object x0 can be specified which is an element of S and which makes the

statement Q(x0) is a true statement.
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Examples. How do we argue for the underlined conclusions of the statements below?
(a) Let u ∈ Z. u is divisible by u.

Recall ‘u is divisible by u’ reads:
• ‘There exists some k such that k ∈ Z and u = ku.’
A ‘candidate’ for k which we can spot immediately is 1.
Hence we proceed as:

... 1 ∈ Z. Also, u = 1 · u. Hence u is divisible by u.

(b) Let u, v, w ∈ Z. Suppose u is divisible by v and v is divisible by w. Then
u is divisible by w.
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Examples. How do we argue for the underlined conclusions of the statements below?
(a) Let u ∈ Z. u is divisible by u.
(b) Let u, v, w ∈ Z. Suppose u is divisible by v and v is divisible by w. Then

u is divisible by w.
Recall ‘u is divisible by w’ reads:
• ‘There exists some k such that k ∈ Z and u = kw.’
We want to name an appropriate ‘candidate’ k which, we hope, is an element of
Z and satisfies u = kw.
Roughwork. We ask:
• What can be said about k if k ∈ Z and u = kw?
Then we ‘unwrap’ the assumption ‘u is divisible by v and v is divisible by w’ to
obtain:
• ‘there exist some g, h ∈ Z such that u = gv and v = hw’.
So we obtain a ‘candidate’ for k, namely, k = gh.
In the formal argument, we proceed as:
• ... There exist some g, h ∈ Z such that u = gv and v = hw. Take k = gh.

Since blah-blah-blah, k ∈ Z. Also, since bleh-bleh-bleh, u = kw. Hence u is
divisible by w.
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To dis-prove
‘(∀x)P (x)’ (or ‘(∀x ∈ S)Q(x)’)

is the same as to prove
‘(∃y)(∼P (y))’ (or ‘(∃x ∈ S)(∼Q(x))’ respectively)

This is the logical foundation of ‘dis-proof by counter-example’.
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To dis-prove
‘(∃x)P (x)’ (or ‘(∃x ∈ S)Q(x)’)

is the same as to prove
‘(∀y)(∼P (y))’ (or ‘(∀x ∈ S)(∼Q(x))’ respectively).

In practice, we may indeed prove the negation of (∃x)P (x) (or (∃x ∈ S)Q(x) re-
spectively); however, we may also proceed to obtain a contradiction from (∃x)P (x)

(or (∃x ∈ S)Q(x) respectively).
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8. Generalized intersections and generalized unions.
Definition.
Let M be a set, and {Sn}∞n=0 be an infinite sequence of subsets of the set M . (For
any n ∈ N, Sn is a subset of M .)

(1) The (generalized) intersection of the infinite sequence of subsets
{Sn}∞n=0 of the set M is defined to be the set

{x ∈ M : x ∈ Sn for any n ∈ N}.

It is denoted by
∞
∩
n=0

Sn.

(2) The (generalized) union of the infinite sequence of subsets {Sn}∞n=0

of the set M is defined to be the set

{x ∈ M : x ∈ Sn for some n ∈ N}.

It is denoted by
∞
∪
n=0

Sn.
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Remark. Heuristical understanding of these definitions?
(1) Suppose x ∈ M . Then

x ∈
∞
∩
n=0

Sn iff (x ∈ Sn for any n ∈ N)

‘iff’ ‘x ∈ S0 and x ∈ S1 and x ∈ S2 and ...’

Therefore
∞
∩
n=0

Sn is the collection of exactly those x’s belonging to M which satisfies
‘x ∈ S0 and x ∈ S1 and x ∈ S2 and ...’.
Suppose Sj = M whenever j ≥ 2. Then

∞
∩
n=0

Sn = S0 ∩ S1.

(2) Suppose x ∈ M . Then

x ∈
∞
∪
n=0

Sn iff (x ∈ Sn for some n ∈ N)

‘iff’ ‘x ∈ S0 or x ∈ S1 or x ∈ S2 or ...’

Therefore
∞
∪
n=0

Sn is the collection of exactly those x’s belonging to M which satisfies
‘x ∈ S0 or x ∈ S1 or x ∈ S2 or ...’.
Suppose Sj = ∅ whenever j ≥ 2. Then

∞
∪
n=0

Sn = S0 ∪ S1.
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Theorem (⋆).
Let M be a set and {An}∞n=0 be an infinite sequence of subsets of M .

(1) Let S be a subset of M . Suppose S ⊂ An for any n ∈ N. Then S ⊂
∞
∩
n=0

An.

(2) Let S be a subset of M . Suppose S ⊂ An for some n ∈ N. Then S ⊂
∞
∪
n=0

An.

(3) Let T be a subset of M . Suppose An ⊂ T for any n ∈ N. Then
∞
∪
n=0

An ⊂ T .

(4) Let T be a subset of M . Suppose An ⊂ T for some n ∈ N. Then
∞
∩
n=0

An ⊂ T .

(5) Let C be a subset of M . ({An ∪ C}∞n=0, {An ∩ C}∞n=0, {An\C}∞n=0, {C\An}∞n=0

are infinite sequences of subsets of M .) The equalities below hold:

(5a)
( ∞
∩
n=0

An

)
∩ C =

∞
∩
n=0

(An ∩ C).

(5b)
( ∞
∪
n=0

An

)
∪ C =

∞
∪
n=0

(An ∪ C).

(5c)
( ∞
∩
n=0

An

)
∪ C =

∞
∩
n=0

(An ∪ C).

(5d)
( ∞
∪
n=0

An

)
∩ C =

∞
∪
n=0

(An ∩ C).

(5e)
( ∞
∩
n=0

An

)
\C =

∞
∩
n=0

(An\C).

(5f)
( ∞
∪
n=0

An

)
\C =

∞
∪
n=0

(An\C).

(5g) C\
( ∞
∩
n=0

An

)
=

∞
∪
n=0

(C\An).

(5h) C\
( ∞
∪
n=0

An

)
=

∞
∩
n=0

(C\An).
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We may further generalize the notions of intersection and union to arbitrary collec-
tions of subsets of any given set.
Definitions.

(A) Let M be a set. The power set of M is defined to be the set {T | T is a subset of M}.
It is denoted by P(M). (So P(M) is the set of all subsets of M .)

(B) Let M be a set, and C be a subset of P(M). (So every element of C is a subset
of M .)

(1) The (generalized) intersection of the set C of subsets of the set M

is defined to be the set {x ∈ M : x ∈ S for any S ∈ C}.
It is denoted by

∩
S∈C

S (with the tacit understanding C ⊂ P(M)).

(2) The (generalized) union of the set C of subsets of the set M is
defined to be the set {x ∈ M : x ∈ S for some S ∈ C}.
It is denoted by

∪
S∈C

S (with the tacit understanding C ⊂ P(M)).

Theorem (⋆) can be generalized for such notions of intersection and union. Consult
any standard textbook on set theory for detail.
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