1. **Definition.**

Let K, L be sets. We say K is a **subset** of L if the statement (\dagger) holds: (\dagger) For any object x, [if ($x \in K$) then ($x \in L$)]. We write $K \subset L$.

Definition.

Let A be a set.

The **power set** of the set A is defined to be the set

 $\{S \mid S \text{ is a subset of } A\}.$

It is denoted by $\mathfrak{P}(A)$.

Remark. By definition, $S \in \mathfrak{P}(A)$ iff $S \subset A$.

A = ?	Elements of A ?	Subsets of A ? Elements of $\mathfrak{P}(A)$?	$\mathfrak{P}(A) = ?$
Ø	A has no element	ø	2 \$ 3
{0}	0	\$, {0}	{ \$, { o } }
$\{0,1\}$	0,1	\$, 203, 213, 20, 13	$\{\phi, \{0\}, \{1\}, \{0, 1\}\}$
$\{0, 1, 2\}$	0,1,2	ϕ , $\{0, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,$	$\{\phi, \{0\}, \{1\}, \{2\}, \{2\}, \{0, 2\}, \{0, 1\}, 2\}\}$

2. Refer to the Handout *Examples of proofs for properties of basic set operations*. Recall a few results that we have proved:

(a) Statement (3) of Theorem (I).

Let K, L, M be sets. Suppose K is a subset of L and L is a subset of M. Then K is a subset of M.

(b) Statement (1) of Theorem (IV).

Let K, L, M be sets. Suppose K is a subset of L and K is a subset of M. Then K is a subset of $L \cap M$.

(c) Statement (3) of Theorem (IV).

Let K, L, M be sets. Suppose K is a subset of M and L is a subset of M. Then $K \cup L$ is a subset of M.

We shall take these results for granted in the argument for Theorem (\dagger_1) .

3. Theorem (\dagger_1) .

Let A, B be sets. The statements below hold:

- 1. $\emptyset, A \in \mathfrak{P}(A)$. Moreover, $\mathfrak{P}(A) \neq \emptyset$.
- 2. (a) Suppose $A \subset B$. Then $\mathfrak{P}(A) \subset \mathfrak{P}(B)$. (b) Suppose $\mathfrak{P}(A) \subset \mathfrak{P}(B)$. Then $A \subset B$. (c) $A \subset B$ iff $\mathfrak{P}(A) \subset \mathfrak{P}(B)$.

Proof of (1). \$ < A. Then \$ = \$ (A). ACA. The AEP(A). So $\overline{p}(A) \neq \phi$.

Proof of Statements (1), (2a) of Theorem (\dagger_1) .

Proof of (2a). Let A, B be sets. Suppose A < B. Try to prove : P(A) < P(B). What is it, really? For any S, if SEP(A) then SEP(B). · Pick any Object S. Suppre SEF(A). [Try to deduce: SEF(B).] By dephition, since SEP(A), we have SCA. By Theorem (I.3), Since SCA and ACB, we have SCB. Now, by definition, since SCB, we have SEP(B). It follows that $P(A) \subset P(B) = D$

Theorem (\dagger_1) .

Let A, B be sets. The statements below hold:

- 1. $\emptyset, A \in \mathfrak{P}(A)$. Moreover, $\mathfrak{P}(A) \neq \emptyset$.
- 2. (a) Suppose $A \subset B$. Then $\mathfrak{P}(A) \subset \mathfrak{P}(B)$. (b) Suppose $\mathfrak{P}(A) \subset \mathfrak{P}(B)$. Then $A \subset B$. (c) $A \subset B$ iff $\mathfrak{P}(A) \subset \mathfrak{P}(B)$.

Proof of Statements (2b), (2c) of Theorem (\dagger_1) .

Proof of (26).
Let A, B be sets. Suppose
$$\not\models(A) = \not\models(B)$$
.
Try to prove : $A = B$.
Observe this is some as : $A \in \not\models(B)$.
By (1), we have $A \in \not\models(A)$.
Since $A \in \not\models(A)$ and $\not\models(A) \subset \not\models(B)$, we have $A \in \not\models(B)$ [by the definition of subsets].
Therefore, by definition, we have $A \subset B$.
Proof of (20). The result follows from (2a), (2b) immediately.

Theorem (\dagger_1) .

Let A, B be sets. The statements below hold:

- 1. $\emptyset, A \in \mathfrak{P}(A)$. Moreover, $\mathfrak{P}(A) \neq \emptyset$.
- 2. (a) ... (b) ... (c) $A \subset B$ iff $\mathfrak{P}(A) \subset \mathfrak{P}(B)$.
- 3. $\mathfrak{P}(A \cap B) = \mathfrak{P}(A) \cap \mathfrak{P}(B).$

Proof of Statement (3) of Theorem (\dagger_1) . For any T, if TEB(A) nB(B) then TEP(ANB). Let A, B be sets. [What to prove? Some set equality. So? · [Proof of (3a). (We can make use of previously proved results.)] Since $A \cap B \subset A$, we have $P(A \cap B) \subset P(A)$ by (2a). Since $A \cap B \subset B$, we have $P(A \cap B) \subset P(B)$ by (2a). Now, by Theorem (IV. 1), P(ANB) C P(A) (P(B). » [Pros] of (36).] Pick any Object T. Suppose TE \$(A) n \$(B). [Try to deduce : TE \$(A n B)] We have TE \$(A) and TE\$(B). Sizce TEP(A), we have TCA. Sizce TEP(B), we have TCB. Now TCA and TCB. Then, by Theorem (IV. 1), TCANB. Then, by definition, TEP(ANB). It follows that P(A) NP(B) CP(ANB). -- 0

(3a) \$ (ANB) < \$ (A) N\$ (B).

For any S, if SEP(ANB)

(3b) $P(A) \cap P(B) \subset P(A \cap B)$.

This is :

Theorem (\dagger_1) .

Let A, B be sets. The statements below hold:

- 1. $\emptyset, A \in \mathfrak{P}(A)$. Moreover, $\mathfrak{P}(A) \neq \emptyset$.
- 2. (a) ... (b) ... (c) $A \subset B$ iff $\mathfrak{P}(A) \subset \mathfrak{P}(B)$.
- 3. $\mathfrak{P}(A \cap B) = \mathfrak{P}(A) \cap \mathfrak{P}(B).$
- 4. $\mathfrak{P}(A) \cup \mathfrak{P}(B) \subset \mathfrak{P}(A \cup B).$

Proof of Statement (4) of Theorem (\dagger_1) .

Let A, B be sets.
Since
$$A \subset A \cup B$$
, we have $P(A) \subset P(A \cup B)$ by (2a).
Since $B \subset A \cup B$, we have $P(B) \subset P(A \cup B)$ by (2a).
Then $P(A) \cup P(B) \subset P(A \cup B)$. (why?)

4. It is natural to ask whether Statement (\ddagger) below is true:

(‡) Let A, B be sets. $\mathfrak{P}(A \cup B) = \mathfrak{P}(A) \cup \mathfrak{P}(B)$.

This is the same as asking whether Statement (\ddagger') below is true:

 (\ddagger') Let A, B be sets. $\mathfrak{P}(A \cup B) \subset \mathfrak{P}(A) \cup \mathfrak{P}(B)$.

How to approach such a question? Ask Question (\diamondsuit) :

 (\diamondsuit) What happens to the sets A, B if the conclusion ' $\mathfrak{P}(A \cup B) \subset \mathfrak{P}(A) \cup \mathfrak{P}(B)$ ' holds? Answer for Question (\diamondsuit) :

Note that
$$A \cup B \in P(A \cup B)$$
.
Suppose it happens that 'P(AUB) $\subset P(A) \cup P(B)$ ' holds.
Then $A \cup B \in P(A \cup B) \subseteq P(A) \cup P(B)$.
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or $A \cup B \in P(B)$
Therefore $A \cup B \in P(A)$ or A

 $\mathfrak{P}(A \cup B) \subset \mathfrak{P}(A) \cup \mathfrak{P}(B)'$ is given by $B \subset A$ or $A \subset B'$. It turns of that 'this necessary condition is also sufficient'. Theorem (\dagger_2). Let A, B be sets. The statements below hold: 1. Suppose $\mathfrak{P}(A \cup B) \subset \mathfrak{P}(A) \cup \mathfrak{P}(B)$. Then $(B \subset A \text{ or } A \subset B)$. 2. Suppose $(B \subset A \text{ or } A \subset B)$. Then $\mathfrak{P}(A \cup B) \subset \mathfrak{P}(A) \cup \mathfrak{P}(B)$. 3. $\mathfrak{P}(A \cup B) \subset \mathfrak{P}(A) \cup \mathfrak{P}(B)$ iff $(B \subset A \text{ or } A \subset B)$.

this happens

- 6. Theorem (*). (Basic results in set language from another viewpoint.)Let M be a set.
 - 1. $\mathfrak{P}(M)$ is partially ordered by the subset relation.
 - 2. $\mathfrak{P}(M)$ together with the set operations intersection, union, and complement in M constitutes a boolean algebra.
 - 3. $\mathfrak{P}(M)$ forms an abelian group with symmetric difference in M as group operation.