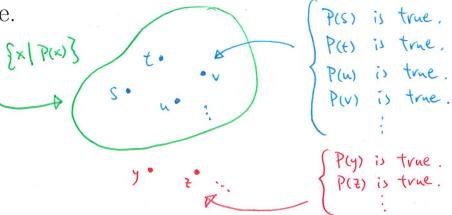
1. Recall Method of specification (for the construction of sets):

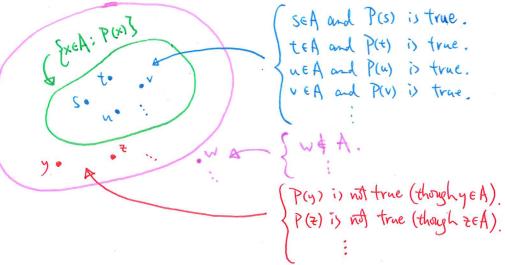
Suppose A is a set and P(x) is a predicate with variable x.

• $\{x \mid P(x)\}$ refers to the set (if it is indeed a set) which contains exactly every object x* for which the statement P(x) is true.

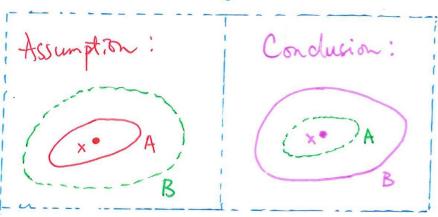
Always remember: be {x | P(x)} iff P(b) is true.



{x ∈ A : P(x)} refers to the set which contains exactly every object x
* which is an element of the given set A and
* for which the statement P(x) is true.
By definition it is a subset of A.



- 2. Recall the notions of *set equality* and *subset relations*:
 - Let A, B be sets. We say A is **equal** to B if both of the following statements (†), (‡) hold:
 - (†) For any object x, [if $(x \in A)$ then $(x \in B)$]. (‡) For any object y, [if $(y \in B)$ then $(y \in A)$]. We write A = B.
 - Let A, B be sets. We say A is a **subset** of B if the following statement (\dagger) holds: (\dagger) For any object x, [if ($x \in A$) then ($x \in B$)]. \leftarrow For each object x, we have : We write $A \subset B$ (or $B \supset A$).

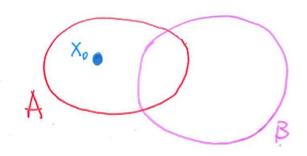


3. Question.

What do we mean by 'A is not a subset of B'?

Answer.

A is not a subset of B exactly when some element of A fails to be an element of B.



More useful formulation for the same thing (though formal):

• There exists some object x_0 such that $(x_0 \in A \text{ and } x_0 \notin B)$.

In this situation, we write $A \notin B$.

4. Example (a).

Let $C = \{x \mid x = n^4 \text{ for some } n \in \mathbb{N}\}, D = \{x \mid x = n^2 \text{ for some } n \in \mathbb{N}\}.$ The statements below hold:

 $(1) C \subset D. \tag{2} D \notin C.$

Heuristic ideas for the statements:

- C is the set of all biquadratic numbers while D is the set of all square numbers.
- Every biquadratic number is the square of a square number. So we expect ' $C \subset D$ ' to hold.
- There may be some square number which is not a biquadratic number; for instance, the square of a non-square number. So we expect ' $D \notin C$ ' to hold.

These are the core ideas in the proofs. They need be present before we write the proofs.

We organize these ideas to give a coherent argument, with reference to the definitions of $C, D, \, `\subset `$.

5. Proofs of the statements in Example (a).

There exits some mENN such that x=m². (1) [We want to prove 'for any x, if $x \in C$ then $x \in D$ '.] Pick any object x. Suppose $x \in C$. [What to deduce? ' $x \in D$ '. What does it read? 'Unwrap' ' $x \in D$ ' to see what it is. How to reach $(x \in D)$? 'Unwrap' $(x \in C)$ to see what may help us.] Name an appropriate ME IN for which x=m² There exists some nEIN such that $x = n^4$. This has been given to us by assumption. Since XEC there exists some next such that x=n⁴. Roughwork: Any appropriate MEN Take $m = n^2$. Then $x = n^4 = (n^2)^2 = m^2$. satisfying x=m? Since NEN, we have MEN. Now we have $X = m^2$ and MEN.we expect $\mu^2 = \chi = h^2$. So $m = n^2$. Hence XED. It follows that C C D.

Proofs of the statements in Example (a).

(2) [Preparation: find out what is to be done.

We want to prove that there exists some x_0 such that $x_0 \in D$ and $x_0 \notin C$. (This is an existence statement.) So we look for an appropriate x_0 .

Does our heuristic understanding of C, D in this specific example help us spot a candidate? Is such a candidate a 'good one'?]

Roughwork:
$$C' = \{0, 1, 16, 81, 625, ...\}$$

 $D' = \{0, 1, 4, 9, 16, 25, ...\}$
How about naming $X_0 = 4$?

Take
$$x_0 = 4$$
.
[Ask: $x_0 \in D$?]
Note that $x_0 = 2^2$ and $2 \in \mathbb{N}$.
Then $x_0 \in D$.
[Ask: $x_0 \notin C$?]
Claim: $x_0 \notin C$.

We justify this claim (with the help
of proof -by-contradiction):
* Suppose it were true that
$$x_0 \in C$$
.
Then these would exit some $n \in \mathbb{N}$ such that
 $x_0 = n^4$.
Now $4 = x_0 = n^4$.
Since $n \in \mathbb{R}$ and $n \ge 0$, we would have $n = \sqrt{2}$.
Now $n = \sqrt{2}$ and $n \in \mathbb{N}$. Cotradiction arrives.

6. Below are other examples similar to Example (a). Example (b). Let C = {x | x = r⁴ for some r ∈ Q}, D = {x | x = r² for some r ∈ Q}. The statements below hold:

$$(1) C \subset D. \tag{2} D \not\subset C.$$

Example (c).

Let $C = \{x \mid x = s + t\sqrt{2} \text{ for some } s, t \in \mathbb{Z}\}, D = \{x \mid x = u + v\sqrt{3} \text{ for some } u, v \in \mathbb{Z}\}.$ The statements below hold:

(1) $\mathbb{Z} \subset C \cap D$. (2) $C \notin D$. (3) $D \notin C$. (4) $C \cap D \subset \mathbb{Z}$. (5) $C \cap D = \mathbb{Z}$.

Example (d).

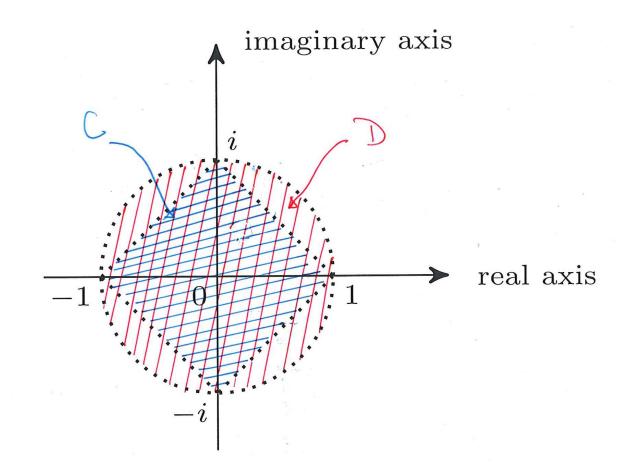
Let $C = \{x \mid x = s + t\sqrt{2} \text{ for some } s, t \in \mathbb{Q}\}, D = \{x \mid x = u + v\sqrt{3} \text{ for some } u, v \in \mathbb{Q}\}.$ The statements below hold:

(1) $\mathbb{Q} \subset C \cap D$. (2) $C \notin D$. (3) $D \notin C$. (4) $C \cap D \subset \mathbb{Q}$. (5) $C \cap D = \mathbb{Q}$.

7. Example (e). Let $C = \{\zeta \in \mathbb{C} : |\operatorname{Re}(\zeta)| + |\operatorname{Im}(\zeta)| < 1\}, D = \{\zeta \in \mathbb{C} : |\zeta| < 1\}.$ The statements below hold:

 $(1) C \subset D. \tag{2} D \notin C.$

Heuristic ideas for the statements, which can be visualized using the Argand plane:



8. Proofs of the statements in Example (e).

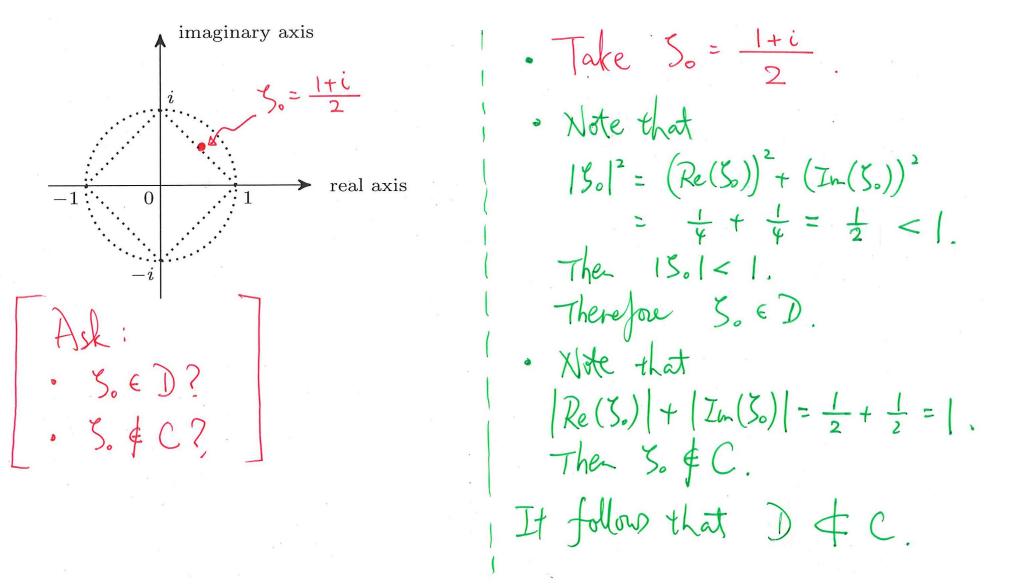
(1) [Reminder. We want to prove 'for any $\zeta \in \mathbb{C}$, if $\zeta \in C$ then $\zeta \in D$ '.] Pick any object ζ . Suppose $\zeta \in C$.

[Roughwork. What to deduce? ' $\zeta \in D$ '. What does it read? ' $|\zeta| < 1$.' How to reach ' $\zeta \in D$ '? Find out what ' $\zeta \in C$ ' reads: it is $|\mathsf{Re}(\zeta)| + |\mathsf{Im}(\zeta)| < 1$.]

Then
$$|\operatorname{Re}(S)| + |\operatorname{Im}(S)| < |$$
. $(\$)$
How does $|S| (nk up with |\operatorname{Re}(S)|, |I_{-}(S)|?]$
We have
 $|S|^{2} = (\operatorname{Re}(S))^{2} + (\operatorname{Im}(S))^{2}$
 $= |\operatorname{Re}(S)|^{2} + |\operatorname{Im}(S)|^{2}$
 $= |\operatorname{Re}(S)| \cdot |\operatorname{Re}(S)| + |\operatorname{Im}(S)| \cdot |\operatorname{Im}(S)|$
 $\leq |\operatorname{Re}(S)| \cdot | + |\operatorname{Im}(S)| \cdot | = |$
 $= |\operatorname{Re}(S)| \cdot | + |\operatorname{Im}(S)| \cdot | = |$
 $= |\operatorname{Re}(S)| + |$
 $= |$
 $= |\operatorname{Re}(S)| + |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $= |$
 $=$

Proofs of the statements in Example (e).

(2) [*Preparation.* find out what is to be done. We want to prove that there exists some ζ_0 such that $\zeta_0 \in D$ and $\zeta_0 \notin C$. (This is an existence statement.) So we look for an appropriate ζ_0 . \cdots]



9. Below are other examples similar to Example (e). **Example (f)**. Let $C = \{\zeta \in \mathbb{C} : |\zeta - 1| \le 1\}, D = \{\zeta \in \mathbb{C} : |\zeta| \le 2\}.$ The statements below hold:

$$(1) C \subset D. \tag{2} D \notin C.$$

Example (g).

Let $C = \{\zeta \in \mathbb{C} : \operatorname{Re}(\zeta) \ge 0\}, D = \{\zeta \in \mathbb{C} : \operatorname{Im}(\zeta) \ge 0\}, E = \{\zeta \in \mathbb{C} : |\zeta - 1 - i| \le 1\}.$ The statements below hold:

 $(1) E \subset C \cap D. \quad (2) C \not\subset D. \quad (3) D \not\subset C.$

Example (h). Let $C = \{\zeta \in \mathbb{C} : |\zeta - 4| < 5\}, D = \{\zeta \in \mathbb{C} : |\zeta + 4| < 5\}, E = \{\zeta \in \mathbb{C} : |\zeta| < 3\}.$ The statements below hold:

 $(1) C \not\subset D. \qquad (2) D \not\subset C. \qquad (3) E \not\subset C. \qquad (4) E \not\subset D. \qquad (5) E \subset C \cup D.$

10. Example (i).

Let G be an $(m \times n)$ -matrix with real entries, and H be an $(n \times p)$ -matrix with real entries. The statements below hold:

- (1) The null space of H is a subset of the null space of GH.
- (2) Suppose the null space of G is $\{\mathbf{0}_n\}$. Then the null space of GH is a subset of the null space of H.

Remark. The null space $\mathcal{N}(K)$ of a $(p \times q)$ -matrix K with real entries is defined by $\mathcal{N}(K) = \{ \mathbf{v} \in \mathbb{R}^q : K\mathbf{v} = \mathbf{0}_p \}.$

11. Proofs of the statements in Example (i).

(1) [Reminder. We want to prove 'for any $\mathbf{x} \in \mathbb{R}^p$, if $\mathbf{x} \in \mathcal{N}(H)$ then $\mathbf{x} \in \mathcal{N}(GH)$ '.] Pick any $\mathbf{x} \in \mathbb{R}^p$. Suppose $\mathbf{x} \in \mathcal{N}(H)$.

[Roughwork. What to deduce? ' $\mathbf{x} \in \mathcal{N}(GH)$ '. What does it read? ' $(GH)\mathbf{x} = \mathbf{0}_m$.' How to reach ' $(GH)\mathbf{x} = \mathbf{0}_m$ '? Find out what ' $\mathbf{x} \in \mathcal{N}(H)$ ' reads: it is ' $H\mathbf{x} = \mathbf{0}_n$.'] Then by the definition of $\mathcal{N}(H)$, we have $H\mathbf{x} = \mathbf{0}_n$. Therefore $(GH)\mathbf{x} = G(H\mathbf{x}) = G\mathbf{0}_n = \mathbf{0}_m$. Hence, by the definition of $\mathcal{N}(GH)$, we have $\mathbf{x} \in \mathcal{N}(GH)$. It follows that $\mathcal{N}(H) \subset \mathcal{N}(GH)$. (2) Suppose the null space of G is $\{\mathbf{0}_n\}$.

[Reminder. We want to deduce, under the above assumption, that $\mathcal{N}(GH) \subset \mathcal{N}(H)$ ', which reads: 'for any $\mathbf{x} \in \mathbb{R}^p$, if $\mathbf{x} \in \mathcal{N}(GH)$ then $\mathbf{x} \in \mathcal{N}(H)$ '.] Pick any $\mathbf{u} \in \mathbb{R}^p$. Suppose $\mathbf{u} \in \mathcal{N}(GH)$.

[Roughwork. What to deduce? ' $\mathbf{u} \in \mathcal{N}(H)$ '. What does it read? ' $H\mathbf{u} = \mathbf{0}_n$.' How to reach ' $H\mathbf{u} = \mathbf{0}_n$ '? Find out what ' $\mathbf{u} \in \mathcal{N}(GH)$ ' reads: it is ' $(GH)\mathbf{u} = \mathbf{0}_m$ '.] Then by the definition of $\mathcal{N}(GH)$, we have $G(H\mathbf{u}) = (GH)\mathbf{u} = \mathbf{0}_m$.

Therefore, by the definition of $\mathcal{N}(G)$, we have $H\mathbf{u} \in \mathcal{N}(G)$.

Since $\mathcal{N}(G) = \{\mathbf{0}_n\}$, we have $H\mathbf{u} \in \{\mathbf{0}_n\}$. Then $H\mathbf{u} = \mathbf{0}_n$.

Therefore, by the definition of $\mathcal{N}(H)$, we have $\mathbf{u} \in \mathcal{N}(H)$.

It follows that $\mathcal{N}(GH) \subset \mathcal{N}(H)$.

12. Example (j).

Let S, T be subsets of \mathbb{R}^n , G be an $(m \times n)$ -matrix with real entries, and H be an $(n \times p)$ -matrix with real entries.

Define

 $S' = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = G\mathbf{x} \text{ for some } \mathbf{x} \in S \},\$ $T' = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = G\mathbf{x} \text{ for some } \mathbf{x} \in T \}.$

Define

$$S^* = \{ \mathbf{u} \in \mathbb{R}^p : \mathbf{x} = H\mathbf{u} \text{ for some } \mathbf{x} \in S \},\$$
$$T^* = \{ \mathbf{u} \in \mathbb{R}^p : \mathbf{x} = H\mathbf{u} \text{ for some } \mathbf{x} \in T \}.$$

The statements below hold:

(1) Suppose S is a subset of T. Then S' is a subset of T'.
(2) Suppose S is a subset of T. Then S* is a subset of T*.

13. Proofs of the statements in Example (j).

(1) Suppose S is a subset of T.

[Reminder. We want to deduce, under the above assumption, that 'S' is a subset of T'', which reads: 'for any $\mathbf{y} \in \mathbb{R}^m$, if $\mathbf{y} \in S'$ then $\mathbf{y} \in T'$ '. Recall what S' and T' are:

 $S' = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = G\mathbf{x} \text{ for some } \mathbf{x} \in S \},\$

 $T' = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = G\mathbf{x} \text{ for some } \mathbf{x} \in T \}, \text{ in which } G \text{ is some fixed } (m \times n) \text{-matrix.} \}$

Pick any object $\mathbf{y} \in \mathbb{R}^m$. Suppose $\mathbf{y} \in S'$.

[Roughwork. What to deduce? ' $\mathbf{y} \in T'$ '. What does it read? 'Unwrap' ' $\mathbf{y} \in T'$ ' to see what it is. How to reach ' $\mathbf{y} \in T'$ '? 'Unwrap' ' $\mathbf{y} \in S'$ ' to see what may help us.]

Then by the definition of S', there exists some $\mathbf{x} \in S$ such that $\mathbf{y} = G\mathbf{x}$.

Note that $\mathbf{x} \in S$, and by assumption S is a subset of T. Then, by the definition of subset relations, $\mathbf{x} \in T$.

Therefore $\mathbf{x} \in T$ and $\mathbf{y} = G\mathbf{x}$ for the same \mathbf{x}, \mathbf{y} . Hence, by the definition of T', we have $\mathbf{y} \in T'$.

It follows that $S' \subset T'$.

(2) Suppose S is a subset of T.

[Reminder. We want to deduce, under the above assumption, that that 'S^{*} is a subset of T^{*}', which reads: 'for any $\mathbf{u} \in \mathbb{R}^p$, if $\mathbf{u} \in S^*$ then $\mathbf{u} \in T^*$ '. Recall what S^{*} and T^{*} are: $S^* = {\mathbf{u} \in \mathbb{R}^p : \mathbf{x} = H\mathbf{u} \text{ for some } \mathbf{x} \in S},$ $T^* = {\mathbf{u} \in \mathbb{R}^p : \mathbf{x} = H\mathbf{u} \text{ for some } \mathbf{x} \in T}$ in which H is some fixed $(m \times n)$

 $T^* = {\mathbf{u} \in \mathbb{R}^p : \mathbf{x} = H\mathbf{u} \text{ for some } \mathbf{x} \in T}, \text{ in which } H \text{ is some fixed } (m \times p)-$ matrix.]

Pick any object $\mathbf{u} \in \mathbb{R}^p$. Suppose $\mathbf{u} \in S^*$.

[Roughwork. What to deduce? ' $\mathbf{u} \in T^*$ '. What does it read? 'Unwrap' ' $\mathbf{u} \in T^*$ ' to see what it is. How to reach ' $\mathbf{u} \in T^*$ '? 'Unwrap' ' $\mathbf{u} \in S^*$ ' to see what may help us.]

Then by the definition of S^* , there exists some $\mathbf{x} \in S$ such that $\mathbf{x} = H\mathbf{u}$.

Note that $\mathbf{x} \in S$, and by assumption S is a subset of T. Then, by the definition of subset relations, $\mathbf{x} \in T$.

Therefore $\mathbf{x} \in T$ and $\mathbf{x} = H\mathbf{u}$, for the same \mathbf{x}, \mathbf{u} . Hence, by the definition of T^* , we have $\mathbf{u} \in T^*$.

It follows that $S^* \subset T^*$.