
1. Many a set cannot be presented as a list, because it is not ‘small’. Even though a set
can be presented as a list, for one reason or another it may be undesirable to do so.

Illustrations.
(a) Consider the collection ‘0, 1, 4, 9, 16, 25, 36, · · · ’.

Is it apparent that it refers to the collection of all square integers?

But why can’t it be understood as the collection of 0, 1, 4, 9, 16, 25 and the integers
no less than 36?

(b) Consider the collection ‘1, 2, 3, 4, · · · ; 1
2
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,
5

2
,
7
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, · · · ; 1
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,
2

3
,
4

3
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, · · · ; ...’

Is it apparent that it refers to the collection of all positive rational numbers? Or
is it not?

Can you conceive a better list than this one?

Or is it desirable to describe the collection of all positive rational numbers in this
way?
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2. When it is impossible or undesirable to present a set by exhaustively listing every
element of the set, we may try the Method of Specification:

We pinpoint the elements of the set concerned by writing down an appropriate
‘selection criterion’ which instructs ourselves exactly which objects are to be
collected (and which not).

Formally speaking, to construct a set through this method, we write down an appro-
priate predicate, say, P (x), with one variable x, for which:—
• an object to be ‘collected’ as an element of the set concerned will convert P (x)

into a true statement upon its being substituted into x, while
• an object to be ‘discarded’ will convert P (x) into a false statement upon its being

substituted into x.
3. Mathematical statements and predicates.

• A mathematical statement is a sentence with mathematical content (or sev-
eral inter-related sentences which can be condensed into one through the appro-
priate use of clauses), for which it is meaningful to say it is true or it is false.

• A predicate with variables x, y, z, · · · is a statement ‘modulo’ the ambiguity
of possibly one or several variables x, y, z, · · · .
Provided we have specified x, y, z, · · · in such a predicate, it becomes a statement,
for which it makes sense to say it is true or false.
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4. Two forms of Method of Specification.
Suppose A is a set, and P (x) is a predicate with variable x.

(a) {x | P (x)} refers to the set (if it is indeed a set) which contains exactly every
object x
∗ for which the statement P (x) is true.
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(b) {x ∈ A : P (x)} refers to the set which contains exactly every object x
∗ which is an element of the given set A and
∗ for which the statement P (x) is true.
By definition it is a subset of A.
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Reminder.
The symbol ‘x’ in the expressions

‘{x | P (x)}’, ‘{x ∈ A : P (x)}’

are dummies.

(a) {x | P (x)}, {u | P (u)}, {c | P (c)} all refer to the same set.

(b) {x ∈ A : P (x)}, {u ∈ A : P (u)}, {c ∈ A : P (c)} all refer to the same set.

Another reminder.
Always remember (how this construction is used in practice):—

(a) Suppose S stands for the set {x | P (x)}, and u is an object.

Then
u ∈ S iff P (u) is a true statement.

(b) Suppose T stands for the set {x ∈ A : P (x)}, and u is an object.

Then
u ∈ T iff (u ∈ A and P (u) is a true statement).
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5. Example (1).
(a) The predicate

‘x = 1 or x = 2 or x = 3’
is converted into a true statement exactly when:

any one of 1, 2, 3 into the variable x.

Hence
{x | x = 1 or x = 2 or x = 3} = {1, 2, 3} as sets.

(b) The predicate
‘x2 − 3x + 2 = 0’

is converted into a true statement exactly when:
any one of 1, 2 is substituted into the variable x.

Hence
{x | x2 − 3x + 2 = 0} = {1, 2} as sets.
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(c) The predicate
‘x2 + 4 = 0’

is converted into a true statement exactly when
any one of 2i,−2i is substituted into the variable x.

Hence:
i. {x | x2 + 4 = 0} = {2i,−2i} as sets.

ii. {x ∈ C : x2 + 4 = 0} = {2i,−2i} as sets.

iii. {x ∈ R : x2 + 4 = 0} = ∅.
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(d) The predicate
‘(x2 + 1)(x2 − 2) = 0’

is converted into a true statement exactly when:
any one of

√
2,−

√
2, i,−i is substituted into the variable x.

Hence:
i. {x | (x2 + 1)(x2 − 2) = 0} = {

√
2,−

√
2, i,−i} as sets.

ii. {x ∈ C : (x2 + 1)(x2 − 2) = 0} = {
√
2,−

√
2, i,−i} as sets.

iii. {x ∈ R : (x2 + 1)(x2 − 2) = 0} = {
√
2,−

√
2} as sets.

iv. {x ∈ Q : (x2 + 1)(x2 − 2) = 0} = ∅ as sets.

(e) The predicate
‘x2 − 3x + 2 < 0’

is converted into a true statement exactly when:
any one real number strictly between 1 and 2 is substituted into the variable x.

Hence
{x ∈ R : x2 − 3x + 2 < 0} = {x ∈ R : 1 < x < 2} as sets.
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6. Solution sets, as sets constructed by the Method of Specification.
Every equation/inequality with unknown so-and-so in the set blah-blah-blah can be
thought of as a predicate with one variable. That variable is usually denoted by the
same so-and-so as well.

An object is called a solution of that equation/inequality exactly when:—
upon the object being substituted into the equation/inequality concerned, a true
statement is obtained.

By the phrase solution set for such an equation/inequality, we mean the subset
of the set blah-blah-blah constructed through the Method of Specification with the
equation/inequality concerned being used as the ‘selection criterion’.

Hence by definition, an object belong to the solution set for such an equation/inequality
exactly when:

the object is a solution of that equation/inequality.
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Illustrations.
(a) The equation x2− 3x+2 = 0 with real unknown x is a predicate with variable x.

The solution set for this equation is the set {x ∈ R : x2 − 3x + 2 = 0}.

(b) The inequality x2 − 3x + 2 < 0 with real unknown x is a predicate with variable
x.

The solution set is the set {x ∈ R : x2 − 3x + 2 < 0}.

(c) The equation x2 + 4 = 0 with complex unknown x is a predicate with variable x.

The solution set for this equation is the set {x ∈ C : x2 + 4 = 0}.

(d) The equation sin(x) =
1

2
with real unknown x is a predicate with variable x.

The solution set for this equation is the set
{
x ∈ R : sin(x) =

1

2

}
.
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(e) Define A =

[
1 2 3
3 2 1

]
, b =

[
6
6

]
.

The equation Ax = b with unknown vector x in R3 is a predicate with variable
x.

The solution set for this equation is the set {x ∈ R3 : Ax = b}.
(Here R2 is regarded as the set of all vectors with two real entries.)

(f) Let A be an (m× n)-matrix with real entries.

The equation Ax = 0 with unknown vector x in Rn is a predicate with variable
x.

The solution set for this equation is the set {x ∈ Rn : Ax = 0}.

In your linear algebra course, this set is called the null space of A.
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7. Definition. (Intervals as sets constructed with the Method of Speci-
fication.)
Let S be a subset of R. The set S is said to be an interval in R if any one of the
statements below hold:

(a) S = ∅.

(b) S = {x ∈ R : a < x} for some a ∈ R.

(c) S = {x ∈ R : a ≤ x} for some a ∈ R.

(d) S = {x ∈ R : x < b} for some b ∈ R.

(e) S = {x ∈ R : x ≤ b} for some b ∈ R.

(f) S = {x ∈ R : a < x < b} for some a, b ∈ R.

(g) S = {x ∈ R : a ≤ x < b} for some a, b ∈ R.

(h) S = {x ∈ R : a < x ≤ b} for some a, b ∈ R.

(i) S = {x ∈ R : a ≤ x ≤ b} for some a, b ∈ R.

(j) S = R.
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Remark on notations and terminologies. We write:

• (a,+∞) = {x ∈ R : a < x}.
• [a,+∞) = {x ∈ R : a ≤ x}.
• (−∞, b) = {x ∈ R : x < b}.
• (−∞, b] = {x ∈ R : x ≤ b}.

• (a, b) = {x ∈ R : a < x < b}.
• [a, b) = {x ∈ R : a ≤ x < b}.
• (a, b] = {x ∈ R : a < x ≤ b}.
• [a, b] = {x ∈ R : a ≤ x ≤ b}.

Each of the numbers a, b is called an endpoint of the interval concerned.

If the interval concerned contains all of its endpoints as its elements, it is said to be
a closed interval.

If it contains none, it is said to be an open interval.

If the interval is bounded in R, it is said to be a bounded interval.

If it is not bounded in R, it is said to be an unbounded interval.

We agree to say that ∅ is both an open interval and a closed interval.

We also agree to say that R is both an open interval and a closed interval.
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8. Example (2).
Very often a predicate, say, P (x), with variable x, used as the ‘selection criterion’ in
the application of the Method of Specification is of the form

‘there exists some blah-blah-blah such that bleh-bleh-bleh’
in which the variable x sits inside ‘bleh-bleh-bleh’.

(a) The predicate (with variable x) given by
‘there exists some n ∈ N such that x = n2’

is converted into a true statement exactly when any one square integers (0, 1, 4, 9, 16, · · · )
is substituted into the variable x.

Hence
{x | there exists some n ∈ N such that x = n2}

is the same as the set of all square integers ‘{0, 1, 4, 9, 16, · · · }’.

The use of the Method of Specification spares us the trouble of having to clarifying
what we mean by the dot-dot-dot’s in ‘0, 1, 4, 9, 16, · · · ’.
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Remark on short-hand.
When we allow the predicate

‘there exists some n ∈ N such that x = n2’
to be presented as

‘x = n2 for some n ∈ N’,
we may present the set

{x | there exists some n ∈ N such that x = n2}
as

{x | x = n2 for some n ∈ N}.

We may ‘abbreviate’ the last expression as
{n2 | n ∈ N}.

This ‘short-hand’ is visually appealing as it suggests that the set concerned is
constructed by collecting those and only those ‘numbers of the form n2’ obtained
‘when n runs through all possible natural numbers’.
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(b) The predicate (with variable x) given by
‘there exists some n ∈ Z such that x = 2n’

is converted into a true statement exactly when any one even integers
(0,±2,±4,±6, · · · ) is substituted into the variable x.

Hence:
i. {x | there exists some n ∈ Z such that x = 2n} is the same as the set of all

even integers
‘{· · · ,−6,−4,−2, 0, 2, 4, 6, · · · }’.

ii. {x ∈ N : there exists some n ∈ Z such that x = 2n} is the same as the set of
all non-negative integers

‘{0, 2, 4, 6, 8, · · · }’.
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(c) The predicate (with variable x) given by
‘there exists some n ∈ Z such that x = n3’

is converted into a true statement exactly when any one even integers (0,±1,±8,±27, · · · )
is substituted into the variable x.

Hence:
i. {x | there exists some n ∈ Z such that x = n3} is the same as the set of all

cube integers

‘{· · · ,−27,−8,−1, 0, 1, 8, 27, · · · }’.
ii. {x ∈ N : there exists some n ∈ Z such that x = n3} is the same as the set of

all non-negative cube integers
‘{0, 1, 8, 27, 64, · · · }’.
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(d) The predicate (with variable x) given by
‘there exist some m,n ∈ N such that x = 2m · 3n’

is converted into a true statement exactly when any number which can be factorized
as a product of 2’s and 3’s is substituted into the variable x.

Hence
{x | there exist some m,n ∈ N such that x = 2m · 3n}

is the same as the set
‘{1, 2, 3, 4, 6, 8, 9, 12, 18, 27, · · · }’.

(e) The predicate (with variable z) given by
‘there exist some n ∈ N such that |z| = n’

is converted into a true statement exactly when any complex number whose mod-
ulus is a natural number is substituted into the variable z.

Hence
{z ∈ C : there exist some n ∈ N such that |z| = n}

is the same as the set
{z ∈ C : |z| ∈ N}.

It is the ‘union’ of all circles with centre at 0 and with radius being a natural
number.
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(f) Let H be a (p× q)-matrix.

The predicate (with variable y) given by
‘there exist some t ∈ Rq such that y = Ht’

is converted into a true statement exactly when a vector in Rp which ‘can be
expressed as Ht (for some appropriate vector t)’ is substituted into the variable
y.

The set {y ∈ Rp : there exist some t ∈ Rq such that y = Ht} is the column
space of the matrix H , as introduced in your linear algebra course.

Short-hand.
We write this set as

{y ∈ Rp : y = Ht for some t ∈ Rq},
or even as

{Ht | t ∈ Rq}.

This ‘short-hand’ is visually appealing as it suggests that the set concerned is
constructed by collecting those and only those ‘vectors of the form Ht’ obtained
‘when t runs through all possible elements of Rq’.
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(g) Let u1,u2, · · · ,uk be vectors in Rn.

The predicate (with variable y) given by
‘there exist some α1, α2, · · · , αk ∈ R such that y = α1u1 + α2u2 + · · ·+ αkuk’

is converted into a true statement exactly when a vector in Rn which ‘can be
expressed as a linear combination of u1,u2, · · · ,uk’ is substituted into the variable
y.

The set
{
y ∈ Rn :

there exist some α1, α2, · · · , αk ∈ R

such that y = α1u1 + α2u2 + · · · + αkuk

}
is the span of the

vectors u1,u2, · · · ,uk, as introduced in your linear algebra course.

Short-hand.
We write this set as{

y ∈ Rn :
y = α1u1 + α2u2 + · · · + αkuk

for some α1, α2, · · · , αk ∈ R

}
,

or even as
{α1u1 + α2u2 + · · · + αkuk | α1, α2, · · · , αk ∈ R}.

This ‘short-hand’ is visually appealing as it suggests that the set concerned is
constructed by collecting all possible linear combinations of u1,u2, · · · ,uk in Rn.
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9. ‘Solving an equation/inequality’, understood as finding an ‘explicit
presentation’ of its solution set.
To ‘solve an equation/inequality’ is the same as to determine all its solutions and
find a way to present them explicitly.

Very often such an equation/inequality has (infinitely) many solutions, and no one
specific solution is privileged over another.

This prompts us to present the collection of all solutions for such an equation/inequality
as a set constructed by the method of specification, in which the ‘selection criterion,
used in the application of this method gives an explicit description of all individual
solutions of the equation/inequality.
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Illustrations.
(a) The solutions of the equation x2 − 3x + 2 = 0 with real unknown x are exactly

1, 2.

We may present the content of the above statement in the form of the set equality
{x ∈ R : x2 − 3x + 2 = 0} = {1, 2}.

The left-hand side is the solution set of the equation x2 − 3x + 2 = 0 with real
unknown x.
The right-hand side is the same set, in which every solution of this equation is
presented explicitly.

(b) The solutions of the equation x2 + 4 = 0 with complex unknown x are exactly
2i,−2i.

We may present the content of the above statement in the form of the set equality
{x ∈ C : x2 + 4 = 0} = {2i,−2i}.

The left-hand side is the solution set of the equation x2 + 4 = 0 with complex
unknown x.
The right-hand side is the same set, in which every solution of this equation is
presented explicitly.
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(c) There is no solution for the equation x2 + 4 = 0 with real unknown x.

We may present the content of the above statement in the form of the set equality
{x ∈ R : x2 + 4 = 0} = ∅.

The left-hand side is the solution set of the equation x2+4 = 0 with real unknown
x.

The right-hand side is the same set, in which every solution of this equation is
presented explicitly.

(d) The solutions of the inequality x2 − 3x + 2 < 0 with real unknown x are exactly
the real numbers strictly between 1 and 2.

We may present the content of the above statement in the form of the set equality
{x ∈ R : x2 − 3x + 2 < 0} = {x ∈ R : 1 < x < 2}.

The left-hand side is the solution set of the equation x2 − 3x + 2 < 0 with real
unknown x.

The right-hand side is the same set, in which every solution of this equation is
presented explicitly.
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(e) Suppose α is a real number.

Then α is a solution sin(x) =
1

2
with real unknown x iff

there exists some n ∈ Z such that α = nπ + (−1)n · π
6

.

We may present the content of the above statement in the form of the set equality{
x ∈ R : sin(x) =

1

2

}
=

{
x ∈ R :

There exist some n ∈ Z such that
nπ + (−1)n · π

6

}
.

The left-hand side is the solution set of the equation sin(x) =
1

2
with real unknown

x.

The right-hand side is the same set, in which every solution of this equation is
presented explicitly.
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(f) Define A =

[
1 2 3
3 2 1

]
, b =

[
6
6

]
.

Suppose v is a vector in R3.

Then v is a solution of the equation Ax = b with unknown vector x in R3 iff

there exists some t ∈ R such that v =

11
1

 + t

 1
−2
1

.

We may present the content of the above statement in the form of the set equality{
x ∈ R3 : Ax = b

}
=

x ∈ R3 : There exists some t ∈ R such that x =

11
1

 + t

 1
−2
1

  .

The left-hand side is the solution set of the equation Ax = b with real vector
unknown x.

The right-hand side is the same set, in which every solution of this equation is
presented explicitly.
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10. Example (3).
(a) The predicate

‘x ̸= x’
yields a false statement, no matter which object is substituted into it.

For this reason, the set
{x | x ̸= x}

is the empty set.

Also, for any set A, the set
{x ∈ A : x ̸= x}

is the empty set.

24



(b) Consider the predicate
‘for any n ∈ N, x = n2’,

in which the variable is x.

This predicate yields a false statement no matter which object is substituted into
x.

Hence the set
{x | for any n ∈ N, x = n2}

is the empty set.

Remark.
Contrast this set with

{x | there exists some n ∈ N such that x = n2}.
The latter is the set of all square integers.
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