- 1. Let $\zeta = 1 + i$. Find:
 - (a) the square roots of ζ ,
 - (b) the cube roots of ζ ,
 - (c) the quartic roots of ζ .

Leave your answer in polar form.

- 2. (a) Solve for all real solutions of the equation $\cos(x) = \frac{1}{\sqrt{2}}$ with unknown x.
 - (b) Let m be a positive integer.
 - i. Let $r, \theta \in \mathbb{R}$, and $z = r(\cos(\theta) + i\sin(\theta))$. Show that $z^m + \bar{z}^m = 2r^m \cos(m\theta)$.
 - ii. Express $\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^m + \left(\frac{1}{\sqrt{2}} \frac{i}{\sqrt{2}}\right)^m$ in the form $A\cos(B\theta)$, in which A, B are real numbers, possibly dependent on m.

iii. Hence or otherwise, find all possible values of m for which $\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^m + \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)^m = \sqrt{2}$.

- 3. (a) Let p be a positive integer. Find all possible values of p for which $(1+i)^p (1-i)^p = 0$.
 - (b) Hence, or otherwise, find the value of $\frac{(1+i)^{4k+1}}{(1-i)^{4k-1}}$, where k is a positive integer.
- 4. (a) Let θ be a real number. Suppose θ is not an integral multiple of π .

Let $\omega = \cos(\theta) + i\sin(\theta)$. Suppose $\omega^2 - 2\bar{\omega} + \frac{1}{\omega}$ is real. Find the two possible values of ω .

- (b) Denote by α,β the two values of ω obtained in the previous part.
 - i. Prove that $\alpha^2 = \beta$ and $\beta^2 = \alpha$.
 - ii. Find the respective values of α^3 and β^3 .
 - iii. Suppose n is an integer. Find all possible values of $\alpha^n + \beta^n$.
- 5. (a) i. Let $\theta \in \mathbb{R}$, and $\omega = \cos(\theta) + i\sin(\theta)$. Let *n* be a positive integer. Prove that $\omega^n + \frac{1}{\omega^n} = 2\cos(n\theta)$ and $\omega^n - \frac{1}{\omega^n} = 2i\sin(n\theta)$.
 - ii. Hence find all complex numbers which satisfies $\frac{(z^2 1/z^2)i}{z^2 + 1/z^2} = -\sqrt{3}$.
 - (b) Consider the polynomial $f(x) = x^2 x + 1$.
 - i. Express, in polar form, the roots of f(x).

ii. Let α, β be the roots of f(x). Let k be an integer. Find the quadratic polynomial with leading coefficient 1 whose roots are $\left(\frac{\alpha}{\beta}\right)^k$ and $\left(\frac{\beta}{\alpha}\right)^k$ for the various scenarios below: A. k = 3p for some $p \in \mathbb{Z}$.

- $n = 3p \text{ for some } p \in \mathbb{Z}.$
- B. k = 3q + 1 for some $q \in \mathbb{Z}$.
- C. k = 3r + 2 for some $r \in \mathbb{Z}$.
- 6. Let $\theta \in \mathbb{R}$, and $z = \cos(\theta) + i\sin(\theta)$.
 - (a) Let $m \in \mathbb{N} \setminus \{0\}$. Prove that $2\cos(m\theta) = z^m + \overline{z}^m$ and $2i\sin(m\theta) = z^m \overline{z}^m$.
 - (b) Let $n \in \mathbb{N} \setminus \{0\}$. Applying the result above, or otherwise, prove the statements below:

i.
$$\cos(2n\theta) = \sum_{j=0}^{n} (-1)^{j} {\binom{2n}{2j}} \cos^{2n-2j}(\theta) \sin^{2j}(\theta)$$
, and
 $\sin(2n\theta) = \sum_{j=0}^{n-1} (-1)^{j} {\binom{2n}{2j+1}} \cos^{2n-2j-1}(\theta) \sin^{2j+1}(\theta).$
ii. $\cos((2n+1)\theta) = \sum_{j=0}^{n} (-1)^{j} {\binom{2n+1}{2j}} \cos^{2n+1-2j}(\theta) \sin^{2j}(\theta)$, and
 $\sin((2n+1)\theta) = \sum_{j=0}^{n} (-1)^{j} {\binom{2n+1}{2j+1}} \cos^{2n-2j}(\theta) \sin^{2j+1}(\theta).$

7. Let $\theta \in \mathbb{R}$ and $z = \cos(\theta) + i\sin(\theta)$.

(a) Let
$$n \in \mathbb{N} \setminus \{0\}$$
. Prove that $2^n \cos^n(\theta) = \left(z + \frac{1}{z}\right)^n$ and $2^n i^n \sin^n(\theta) = \left(z - \frac{1}{z}\right)^n$.

(b) Hence, or otherwise, deduce the results below:

i.
$$\cos^{7}(\theta) = \frac{1}{2^{C}} \sum_{j=0}^{7} A_{j} \cos(j\theta) \text{ and } \sin^{7}(\theta) = \frac{1}{2^{D}} \sum_{j=0}^{7} B_{j} \sin(j\theta)$$

Here $A_0, A_1, A_2, ..., A_7, B_0, B_1, B_2, ..., B_7, C, D$ are integers whose respective value you have to determine.

ii.
$$\cos^8(\theta) = \frac{1}{2^C} \sum_{j=0}^8 A_j \cos(j\theta)$$
 and $\sin^8(\theta) = \frac{1}{2^D} \sum_{j=0}^8 B_j \cos(j\theta)$.
Here $A_0, A_1, A_2, ..., A_8, B_0, B_1, B_2, ..., B_8, C, D$ are integers whose respective value you have to determine.

Remark. Can you generalize the idea for the situation of $\cos^{n}(\theta)$, $\sin^{n}(\theta)$, in which *n* is an arbitrary positive integer?

- 8. Let $n \in \mathbb{N}$. Let α, θ be real numbers. Suppose $\sin(\theta/2) \neq 0$.
 - (a) Prove that

$$\sum_{k=0}^{n} \cos(\alpha + k\theta) = \frac{\sin((n+1)\theta/2)\cos(\alpha + n\theta/2)}{\sin(\theta/2)}, \text{ and } \sum_{k=0}^{n} \sin(\alpha + k\theta) = \frac{\sin((n+1)\theta/2)\sin(\alpha + n\theta/2)}{\sin(\theta/2)}.$$

(b) Suppose $n \ge 3$. Write $\varphi = \frac{2\pi}{n}$. Let $\omega_n = \cos(\varphi) + i\sin(\varphi)$. Let $\eta \in \mathbb{C}$. Suppose $|\eta| = 1$. Prove that $\sum_{k=1}^{n-1} |\eta - \omega_n^k|^2 = 2n$.

Prove that
$$\sum_{k=0} |\eta - \omega_n^k|^2 = 2n$$
.

Remark. Below is the geometric interpretation of the result. Consider the regular *n*-sided polygon with vertices $1, \omega_n, \omega_n^2, \cdots, \omega_n^{n-1}$. The sum of the squares of the lengths of the *n* chords joining respectively the *n* points of this polygon with any one point on the unit circle with centre 0 is the constant *n*.

- 9. Write $\theta = \frac{2\pi}{5}$, $\omega = \cos(\theta) + i\sin(\theta)$, $\sigma = \omega + \omega^4$, $\tau = \omega^2 + \omega^3$. Let g(u) be the polynomial given by $g(u) = u^2 + u 1$.
 - (a) Verify that $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$.
 - (b) Verify that σ, τ are the distinct real roots of the polynomial g(u).
 - (c) i. Prove that $\operatorname{Re}(\omega) = a + b\sqrt{M}$. Hence, or otherwise, find the value of ω . Here a, b are rational numbers and M is an integer. You have to determine the explicit value of a, b, M.
 - ii. Prove that Re(ω²) = c + d√N. Hence, or otherwise, find the value of ω². Here c, d are rational numbers and N is an integer. You have to determine the explicit value of c, d, N.
 iii. Find the respective values of ω³, ω⁴.
 - 2