
MATH1050 De Moivre’s Theorem and roots of unity

1. Recall the notions of real part, imaginary part, conjugate and modulus, introduced in the handout Basic algebraic
results on complex numbers ‘beyond school mathematics’:

Let z be a complex number. Denote the real part and the imaginary part of z by Re(z), Im(z) respectively. (So
z = Re(z) + iIm(z).)
(a) The complex conjugate of z is defined to be the complex number Re(z)− iIm(z). It is denoted by z.
(b) The modulus of z, denoted by |z|, is defined to be the non-negative real number

√
(Re(z))2 + (Im(z))2.

Also recall the notions of polar form and argument from the handout Polar form:

Let z be a complex number.
When we write z = |z|(cos(θ) + i sin(θ)) (for some appropriate real number θ), we say we are presenting z in its
polar form.
When z ̸= 0, such a number θ is called an argument for z.

Further recall how the polar form for the product of two complex numbers is related to the polar forms of the two
complex numbers concerned:

Suppose z, w are non-zero complex numbers, with arguments θ, φ respectively. Then:
(a) zw = |z||w|(cos(θ + φ) + i sin(θ + φ)).
(b) The modulus of zw is |z||w|.
(c) θ + φ is an argument for zw.

real axis

imaginary axis

0

z = |z|(cos(θ) + i sin(θ))

w = |w|(cos(φ) + i sin(φ))

zw = |z||w|(cos(θ + φ) + i sin(θ + φ))

2. Lemma (1). (Special case of De Moivre’s Theorem.)
Suppose θ is a real number. Then for any n ∈ N\{0}, (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ).
Proof of Lemma (1). Suppose θ is a real number.

• For any n ∈ N\{0}, denote by P (n) the proposition (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ).
• (cos(θ) + i sin(θ))1 = cos(1 · θ) + i sin(1 · θ). Then P (1) is true.
• Let k ∈ N\{0}. Suppose P (k) is true. Then (cos(θ) + i sin(θ))k = cos(kθ) + i sin(kθ).

We prove that P (k + 1) is true:

(cos(θ) + i sin(θ))k+1 = (cos(θ) + i sin(θ))k(cos(θ) + i sin(θ))

= (cos(kθ) + i sin(kθ))(cos(θ) + i sin(θ))

= (cos(kθ) cos(θ)− sin(kθ) sin(θ)) + i(sin(kθ) cos(θ) + cos(kθ) sin(θ))

= cos(kθ + θ) + i sin(kθ + θ) = cos((k + 1)θ) + i sin((k + 1)θ)

Hence P (k + 1) is true.
• By the Principle of Mathematical Induction, P (n) is true for any n ∈ N\{0}.

1



3. De Moivre’s Theorem.
Suppose θ is a real number. Then for any m ∈ Z, (cos(θ) + i sin(θ))m = cos(mθ) + i sin(mθ).
Proof. Suppose θ is a real number.
Pick any m ∈ Z. We have m = 0 or m > 0 or m < 0.

• (Case 1). Suppose m = 0. Then

(cos(θ) + i sin(θ))m = (cos(θ) + i sin(θ))0 = 1 = (cos(0 · θ) + i sin(0 · θ)) = cos(mθ) + i sin(mθ).

• (Case 2). Suppose m > 0. By Lemma (1), we have (cos(θ) + i sin(θ))m = cos(mθ) + i sin(mθ).
• (Case 3). Suppose m < 0. Define n = −m. Then n ∈ N\{0}. Therefore

(cos(θ) + i sin(θ))m =
1

(cos(θ) + i sin(θ))n
=

1

cos(nθ) + i sin(nθ)
= cos(nθ)− i sin(nθ) = cos(mθ) + i sin(mθ).

Hence in any case, (cos(θ) + i sin(θ))m = cos(mθ) + i sin(mθ).

4. Definition. (Roots of unity.)
Suppose ζ is a complex number and n is a positive integer. Then ζ is called an n-th root of unity if ζn = 1.
Remark. ζ is an n-th root of unity iff ζ is a root of the polynomial zn − 1 in the complex numbers.)

According to Theorem (3), stated below, we can pinpoint, for each positive integer n, exactly which numbers are n-th
roots of unity.

5. Lemma (2).

Suppose n is a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Then ωn is an n-th root of unity.
Proof of Lemma (2).

Suppose n is a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

By De Moivre’s Theorem, we have (ωn)
n = (cos(nθn) + i sin(nθn)) = cos(2π) + i sin(2π) = 1.

6. Theorem (3).

Suppose n is a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Then the n-th roots of unity are the n complex numbers of modulus 1, given by 1, ωn, ωn
2, ..., ωn

n−1.
Remark. This is what the conclusion part of Theorem (3) is saying:—

• Each of the n numbers 1, ωn, ωn
2, ..., ωn

n−1 is an n-th root of unity, and
• if ζ is an n-th root of unity, then ζ is amongst the n numbers 1, ωn, ωn

2, ..., ωn
n−1.

Tacit assumption needed in the argument for Theorem (2).
A tacit assumption, known as Division Algorithm for integers, is used in the argument. It reads:

Let u, v ∈ Z. Suppose v > 0. Then there exist some unique q, r ∈ Z such that u = qv + r and 0 ≤ r < v.

7. Visualization of the n-th roots of unity on the Argand plane.
For each positive integer n, the n-th roots of unity are the n vertices of the regular n-sided polygon inscribed in the
unit circle with centre 0 in the Argand plane, with one vertex at the point 1.

n = 3:
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imaginary axis
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n = 5:
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8. Proof of Theorem (3).

Suppose n is a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

(a) For each k = 0, 1, 2, · · · , n− 1, we have (ωn
k)n = (ωn

n)k = 1k = 1 by Lemma (2).
(b) Let ζ be a complex number. Suppose ζ is an n-th root of unity. Then ζn = 1. [We want to deduce that ζ = ωn

r

for some r ∈ J0, n− 1K.]
We have |ζ|n = 1. Then |ζ| = 1. ζ has an argument, say, φ. Therefore ζ = cos(φ) + i sin(φ).
By De Moivre’s Theorem, we have 1 = ζn = (cos(φ) + i sin(φ))n = (cos(nφ) + i sin(nφ)).
Then cos(nφ) = 1 and sin(nφ) = 0. Therefore there exists some m ∈ Z such that nφ = 2mπ.

Now φ =
m

n
· 2π = mθn.

By Division Algorithm for the integers, there exist some q, r ∈ Z such that m = qn+ r and 0 ≤ r < n.
Then we have φ = mθn = (qn+ r)θn = qnθn + rθn = 2qπ + rθn.
Therefore ζ = cos(φ) + i sin(φ) = cos(rθn) + i sin(rθn) = ωn

r.

9. Definition. (n-th roots of a complex number.)
Suppose n is a positive integer, and w, ζ are complex numbers. Then we say ζ is an n-th root of w if ζn = w.
Remark. ζ is an n-th root of w iff ζ is a root of the polynomial zn − w in the complex numbers.
Warning. As we shall see from Theorem (5), whenever w is a non-zero complex number, there will be n complex
numbers which are n-th roots of w. It is not apparent whether any should be privileged over any other.
For this reason:—

• Never write ‘the n-th root of the complex number w’ unless you are referring to a specific n-th root of the complex
number w that you have already pinpointed.

• Never write ‘ n
√
w’ unless w is a non-negative real number.

(When w is a non-negative real number, we ‘privilege’ its non-negative n-th root over all other n-th roots of w.)

10. Visualization of n-th roots of a complex number in the Argand plane.
Suppose w is a non-zero complex number, with an argument φ. The n-th roots of a non-zero complex number w are
the n vertices of the regular n-sided polygon inscribed in the circle with centre 0 and radius n

√
|w| in the Argand

plane, with one vertex at the point ζ = n
√
|w|(cos(φ/n) + i sin(φ/n)).

• Cubic roots:
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real axis

imaginary axis

0

w = |w|(cos(φ) + i sin(φ))

ζ = 3
√

|w|(cos(φ/3) + i sin(φ/3))

ζω3

ζω3
2

• Quintic roots:

real axis

imaginary axis

0

w = |w|(cos(φ) + i sin(φ))

ζ = 5
√
|w|(cos(φ/5) + i sin(φ/5))
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2
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4

11. Theorem (4).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Let w be a non-zero complex number.
Suppose ζ is an n-th root of w.
Then the n-th roots of w are the n complex numbers given by ζ, ζωn, ζωn

2, · · · , ζωn
n−1.

12. Applying De Moivre’s Theorem and Theorem (4), we can deduce the result below.
Theorem (5).
Let n be a positive integer.
Let w be a non-zero complex number. Suppose φ is an argument for w.
Define ζ0 = n

√
|w|(cos (φ/n) + i sin (φ/n)).

Then the n-th root of w are given by ζ0, ζ0ωn, ζ0ωn
2, · · · , ζ0ωn

n−1.

13. Proof of Theorem (4).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Let w be a non-zero complex number, and ζ be an n-th root of w in the complex numbers.

• We have ζn = w.
For each n = 0, 1, 2, · · · , n− 1, we have (ωn

k)n = 1. Then (ζωn
k)n = ζn(ωn

n)k = 1 · 1k = 1.
• Let ρ be a complex number. Suppose ρ is an n-th root of w.

Then ρn = w. We have
(
ρ

ζ

)n

=
ρn

ζn
=

w

w
= 1.

Then ρ

ζ
is an n-th root of unity. Therefore there exists some r = 0, 1, 2, · · · , n − 1 such that ρ

ζ
= ωn

r. For the

same r, we have ρ = ζωn
r.
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