MATH1050 De Moivre's Theorem and roots of unity

1. Recall the notions of *real part, imaginary part, conjugate* and *modulus,* introduced in the handout Basic algebraic results on complex numbers 'beyond school mathematics':

Let z be a complex number. Denote the real part and the imaginary part of z by $\operatorname{Re}(z)$, $\operatorname{Im}(z)$ respectively. (So $z = \operatorname{Re}(z) + i \operatorname{Im}(z)$.)

- (a) The complex conjugate of z is defined to be the complex number $\operatorname{Re}(z) i\operatorname{Im}(z)$. It is denoted by \overline{z} .
- (b) The modulus of z, denoted by |z|, is defined to be the non-negative real number $\sqrt{(\operatorname{Re}(z))^2 + (\operatorname{Im}(z))^2}$.

Also recall the notions of *polar form* and *argument* from the handout *Polar form*:

Let z be a complex number. When we write $z = |z|(\cos(\theta) + i\sin(\theta))$ (for some appropriate real number θ), we say we are presenting z in its **polar form**.

When $z \neq 0$, such a number θ is called an **argument** for z.

Further recall how the polar form for the product of two complex numbers is related to the polar forms of the two complex numbers concerned:

Suppose z, w are non-zero complex numbers, with arguments θ, φ respectively. Then:

- (a) $zw = |z||w|(\cos(\theta + \varphi) + i\sin(\theta + \varphi)).$
- (b) The modulus of zw is |z||w|.
- (c) $\theta + \varphi$ is an argument for zw.

2. Lemma (1). (Special case of De Moivre's Theorem.)

Suppose θ is a real number. Then for any $n \in \mathbb{N} \setminus \{0\}$, $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$. **Proof of Lemma (1).** Suppose θ is a real number.

- For any $n \in \mathbb{N} \setminus \{0\}$, denote by P(n) the proposition $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.
- $(\cos(\theta) + i\sin(\theta))^1 = \cos(1 \cdot \theta) + i\sin(1 \cdot \theta)$. Then P(1) is true.
- Let $k \in \mathbb{N} \setminus \{0\}$. Suppose P(k) is true. Then $(\cos(\theta) + i\sin(\theta))^k = \cos(k\theta) + i\sin(k\theta)$. We prove that P(k+1) is true:

$$\begin{aligned} (\cos(\theta) + i\sin(\theta))^{k+1} &= (\cos(\theta) + i\sin(\theta))^k (\cos(\theta) + i\sin(\theta)) \\ &= (\cos(k\theta) + i\sin(k\theta))(\cos(\theta) + i\sin(\theta)) \\ &= (\cos(k\theta)\cos(\theta) - \sin(k\theta)\sin(\theta)) + i(\sin(k\theta)\cos(\theta) + \cos(k\theta)\sin(\theta)) \\ &= \cos(k\theta + \theta) + i\sin(k\theta + \theta) = \cos((k+1)\theta) + i\sin((k+1)\theta) \end{aligned}$$

Hence P(k+1) is true.

• By the Principle of Mathematical Induction, P(n) is true for any $n \in \mathbb{N} \setminus \{0\}$.

3. De Moivre's Theorem.

Suppose θ is a real number. Then for any $m \in \mathbb{Z}$, $(\cos(\theta) + i\sin(\theta))^m = \cos(m\theta) + i\sin(m\theta)$.

Proof. Suppose θ is a real number.

Pick any $m \in \mathbb{Z}$. We have m = 0 or m > 0 or m < 0.

• (Case 1). Suppose m = 0. Then

 $(\cos(\theta) + i\sin(\theta))^m = (\cos(\theta) + i\sin(\theta))^0 = 1 = (\cos(0\cdot\theta) + i\sin(0\cdot\theta)) = \cos(m\theta) + i\sin(m\theta).$

- (Case 2). Suppose m > 0. By Lemma (1), we have $(\cos(\theta) + i\sin(\theta))^m = \cos(m\theta) + i\sin(m\theta)$.
- (Case 3). Suppose m < 0. Define n = -m. Then $n \in \mathbb{N} \setminus \{0\}$. Therefore

$$(\cos(\theta) + i\sin(\theta))^m = \frac{1}{(\cos(\theta) + i\sin(\theta))^n} = \frac{1}{\cos(n\theta) + i\sin(n\theta)} = \cos(n\theta) - i\sin(n\theta) = \cos(m\theta) + i\sin(m\theta).$$

Hence in any case, $(\cos(\theta) + i\sin(\theta))^m = \cos(m\theta) + i\sin(m\theta)$.

4. Definition. (Roots of unity.)

Suppose ζ is a complex number and n is a positive integer. Then ζ is called an n-th root of unity if $\zeta^n = 1$. **Remark.** ζ is an n-th root of unity iff ζ is a root of the polynomial $z^n - 1$ in the complex numbers.)

According to Theorem (3), stated below, we can pinpoint, for each positive integer n, exactly which numbers are n-th roots of unity.

5. Lemma (2).

Suppose *n* is a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

Then ω_n is an *n*-th root of unity.

Proof of Lemma (2).

Suppose *n* is a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$. By De Moivre's Theorem, we have $(\omega_n)^n = (\cos(n\theta_n) + i\sin(n\theta_n)) = \cos(2\pi) + i\sin(2\pi) = 1$.

6. Theorem (3).

Suppose n is a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

Then the *n*-th roots of unity are the *n* complex numbers of modulus 1, given by 1, ω_n , ω_n^2 , ..., ω_n^{n-1} . **Remark.** This is what the conclusion part of Theorem (3) is saying:—

- Each of the *n* numbers 1, ω_n , ω_n^2 , ..., ω_n^{n-1} is an *n*-th root of unity, and
- if ζ is an *n*-th root of unity, then ζ is amongst the *n* numbers 1, ω_n , ω_n^2 , ..., ω_n^{n-1} .

Tacit assumption needed in the argument for Theorem (2).

A tacit assumption, known as **Division Algorithm for integers**, is used in the argument. It reads:

Let $u, v \in \mathbb{Z}$. Suppose v > 0. Then there exist some unique $q, r \in \mathbb{Z}$ such that u = qv + r and $0 \le r < v$.

7. Visualization of the n-th roots of unity on the Argand plane.

For each positive integer n, the n-th roots of unity are the n vertices of the regular n-sided polygon inscribed in the unit circle with centre 0 in the Argand plane, with one vertex at the point 1.

8. Proof of Theorem (3).

Suppose *n* is a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

- (a) For each $k = 0, 1, 2, \dots, n-1$, we have $(\omega_n^k)^n = (\omega_n^n)^k = 1^k = 1$ by Lemma (2).
- (b) Let ζ be a complex number. Suppose ζ is an *n*-th root of unity. Then $\zeta^n = 1$. [We want to deduce that $\zeta = \omega_n^r$ for some $r \in [\![0, n-1]\!]$.]

We have $|\zeta|^n = 1$. Then $|\zeta| = 1$. ζ has an argument, say, φ . Therefore $\zeta = \cos(\varphi) + i\sin(\varphi)$. By De Moivre's Theorem, we have $1 = \zeta^n = (\cos(\varphi) + i\sin(\varphi))^n = (\cos(n\varphi) + i\sin(n\varphi))$.

Then $\cos(n\varphi) = 1$ and $\sin(n\varphi) = 0$. Therefore there exists some $m \in \mathbb{Z}$ such that $n\varphi = 2m\pi$.

Now $\varphi = \frac{m}{n} \cdot 2\pi = m\theta_n$.

By Division Algorithm for the integers, there exist some $q, r \in \mathbb{Z}$ such that m = qn + r and $0 \le r < n$. Then we have $\varphi = m\theta_n = (qn + r)\theta_n = qn\theta_n + r\theta_n = 2q\pi + r\theta_n$. Therefore $\zeta = \cos(\varphi) + i\sin(\varphi) = \cos(r\theta_n) + i\sin(r\theta_n) = \omega_n^r$.

9. Definition. (*n*-th roots of a complex number.)

Suppose n is a positive integer, and w, ζ are complex numbers. Then we say ζ is an n-th root of w if $\zeta^n = w$.

Remark. ζ is an *n*-th root of w iff ζ is a root of the polynomial $z^n - w$ in the complex numbers.

Warning. As we shall see from Theorem (5), whenever w is a non-zero complex number, there will be n complex numbers which are n-th roots of w. It is not apparent whether any should be privileged over any other. For this reason:—

- Never write 'the n-th root of the complex number w' unless you are referring to a specific n-th root of the complex number w that you have already pinpointed.
- Never write 'ⁿ√w' unless w is a non-negative real number.
 (When w is a non-negative real number, we 'privilege' its non-negative n-th root over all other n-th roots of w.)

10. Visualization of *n*-th roots of a complex number in the Argand plane.

Suppose w is a non-zero complex number, with an argument φ . The *n*-th roots of a non-zero complex number w are the *n* vertices of the regular *n*-sided polygon inscribed in the circle with centre 0 and radius $\sqrt[n]{|w|}$ in the Argand plane, with one vertex at the point $\zeta = \sqrt[n]{|w|}(\cos(\varphi/n) + i\sin(\varphi/n))$.

• Cubic roots:

• Quintic roots:

11. Theorem (4).

Let *n* be a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

Let w be a non-zero complex number.

Suppose ζ is an *n*-th root of *w*.

Then the *n*-th roots of *w* are the *n* complex numbers given by $\zeta, \zeta \omega_n, \zeta \omega_n^2, \cdots, \zeta \omega_n^{n-1}$.

12. Applying De Moivre's Theorem and Theorem (4), we can deduce the result below.Theorem (5).

Let n be a positive integer.

Let w be a non-zero complex number. Suppose φ is an argument for w.

Define $\zeta_0 = \sqrt[n]{|w|} (\cos(\varphi/n) + i\sin(\varphi/n)).$

Then the *n*-th root of *w* are given by $\zeta_0, \zeta_0 \omega_n, \zeta_0 \omega_n^2, \cdots, \zeta_0 \omega_n^{n-1}$.

13. Proof of Theorem (4).

Let *n* be a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

Let w be a non-zero complex number, and ζ be an n-th root of w in the complex numbers.

• We have $\zeta^n = w$.

For each $n = 0, 1, 2, \dots, n-1$, we have $(\omega_n^k)^n = 1$. Then $(\zeta \omega_n^k)^n = \zeta^n (\omega_n^n)^k = 1 \cdot 1^k = 1$.

• Let ρ be a complex number. Suppose ρ is an *n*-th root of w.

Then $\rho^n = w$. We have $\left(\frac{\rho}{\zeta}\right)^n = \frac{\rho^n}{\zeta^n} = \frac{w}{w} = 1$.

Then $\frac{\rho}{\zeta}$ is an *n*-th root of unity. Therefore there exists some $r = 0, 1, 2, \dots, n-1$ such that $\frac{\rho}{\zeta} = \omega_n^r$. For the same r, we have $\rho = \zeta \omega_n^r$.