1. Recall the notions of real part, imaginary part, conjugate and modulus, introduced

in the handout Basic algebraic results on complex numbers ‘beyond school mathe-
matics”.
Let z be a complex number. Denote the real part and the imaginary part of z by
Re(z), Im(z) respectively. (So z = Re(z) + ilm(z).)
(a) The complex conjugate of z is defined to be the complex number
Re(z) —ilm(2). It is denoted by Z.
(b) The modulus of z is defined to be the non-negative real number

v/ (Re(2))2 + (Im(2))2. It is denoted by |z|.

Also recall the notions of polar form and argument from the handout Polar form:
Let z be a complex number.

When we write z = |z|(cos(0) + isin(f)) (for some appropriate real number 6),
we say we are presenting z in its polar form.

When z # 0, such a number 6 is called an argument for z.



Further recall how the polar form for the product of two complex numbers is related
to the polar forms of the two complex numbers concerned:

Suppose z,w are non-zero complex numbers, with arguments 6, o respectively.
Then:

(a) zw = |z]|w|(cos(0 + @) + isin(0 + ¢)).
(b) The modulus of zw is |z||w|.

(¢c) 0 + @ is an argument for zw.

imaginary axis
A 2w = |z||w|(cos(8 + @) +isin(d + ¢))

w = |w|(cos(p) + sin(yp))

z = |z|(cos(0) + isin(f))

> real axis




2. Lemma (1). (Special case of De Moivre’s Theorem.)

Suppose 0 is a real number.
Then for any n € N\{0}, (cos(f) + isin(f))" = cos(nf) + isin(nd).

Proof of Lemma (1).
Suppose 6 is a real number.
« For any n € N\{0}, denote by P(n) the proposition
(cos(f) + isin(0))" = cos(nl) + isin(nd).
e (cos(f) + isin(6))! = cos(1-6) +isin(1-60). Then P(1) is true.
« Let & € N\{0}. Suppose P(k) is true.
Then (cos(#) + isin(8))* = cos(k) + i sin(kh).
We prove that P(k + 1) is true:
(cos(#) + isin(6))! = (cos(8) 4 i sin(#))"(cos(6) + i sin(8))
= (cos(kf) + isin(k))(cos(0) + isin(0))
= (cos(kf) cos(0) — sin(k6) sin(f)) + i(sin(kf) cos(f) + cos(kf) sin(d))
= cos(k€ 4 0) + isin(kf + 6) = cos((k + 1)0) + isin((k + 1)0)
Hence P(k + 1) is true.
« By the Principle of Mathematical Induction, P(n) is true for any n € N\{0}.



3. De Moivre’s Theorem.
Suppose 0 is a real number.

Then for any m € Z, (cos(0) + isin(0))™ = cos(m@) + i sin(m#).

Proof.

Suppose 6 is a real number. Pick any m € Z. We have m =0 or m > 0 or m < 0.

e (Case 1). Suppose m = 0. Then

(cos(8) + isin(0))™ = (cos(#) + isin(h))"
= 1 =(cos(0-6)+isin(0-0)) = cos(mb) + i sin(mb).

« (Case 2). Suppose m > 0.
By Lemma (1), we have (cos(0) + isin(#))™ = cos(m#@) + i sin(mb).
e (Case 3). Suppose m < 0. Define n = —m. Then n € N\{0}. Therefore

(cos(0) + isin(f))" = (cos(8) + isin(9))" B cos(n#) + isin(nd)
= COS(TL@) — isin(n@)

= cos(m#) + isin(mé).

Hence in any case, (cos(@) + isin(f))™ = cos(mf) + isin(mb).



4. Definition. (Roots of unity.)
Suppose ( Is a complex number and n is a positive integer.
Then ( is called an n-th root of unity if (" = 1.

Remark. ( is an n-th root of unity iff ¢ is a root of the polynomial 2™ — 1 in the
complex numbers.)

According to Theorem (3), stated below, we can pinpoint, for each positive integer
n, exactly which numbers are n-th roots of unity:.

5. Lemma (2).
Suppose n is a positive integer. Write 8,, = 2% Define w,, = cos(#,,) + isin(6,,).
Then w,, is an n-th root of unity.
Proof of Lemma (2).
Suppose n is a positive integer. Write 0,, = 2% Define w,, = cos(6,,) + isin(6,,).

By De Moivre’s Theorem, we have

(wp)" = (cos(nb,) + isin(nb,)) = cos(2mw) + isin(27) = 1.



6. Theorem (3).
2m

Suppose n is a positive integer. Write 6,, = —. Define w,, = cos(6,,) + ¢ sin(6,,).
n

Then the n-th roots of unity are the n complex numbers of modulus 1, given by

2 n—1
L, wy, W=, ..., wy" .

Remark. This is what the conclusion part of Theorem (3) is saying:—
e Each of the n numbers 1, w,, w,>, ..., w," ! is an n-th root of unity, and

2 n—1

o if ( is an n-th root of unity, then ( is amongst the n numbers 1, w,, w,, ..., Wy

Tacit assumption needed in the argument for Theorem (2).
A tacit assumption, known as Division Algorithm for integers, is used in the

argument. It reads:

Let u,v € Z. Suppose v > 0.
Then there exist some unique q,r € Z such that u =qu +r and 0 < r < v.



7. Visualization of the n-th roots of unity on the Argand plane.

For each positive integer n, the n-th roots of unity are the

in the Argand plane,
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8. Proof of Theorem (3).

27
Suppose n is a positive integer. Write 6,, = —. Define w,, = cos(,,) + i sin(6,).
n

(a) For each k = 0,1,2,--- ,n—1, we have (w,”)" = (w,")" = 1* = 1 by Lemma (2).
(b) Let ¢ be a complex number. Suppose ( is an n-th root of unity. Then (" = 1.
[We want to deduce that C = w,” for some r € [0,n — 1] ]
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9. Definition. (n-th roots of a complex number.)
Suppose n Is a positive integer, and w, ( are complex numbers.

Then we say ( is an n-th root of w if (" = w.

Remark.

( is an n-th root of w iff ¢ is a root of the polynomial 2" —w in the complex numbers.

Warning.

As we shall see from Theorem (5), whenever w is a non-zero complex number, there
will be n complex numbers which are n-th roots of w.

It is not apparent whether any should be privileged over any other.

For this reason:—

« Never write ‘the n-th root of the complex number w’ unless you are referring to a
specific n-th root of the complex number w that you have already pinpointed.

« Never write ‘{/w’ unless w is a non-negative real number.

(When w is a non-negative real number, we ‘privilege’ its non-negative n-th root
over all other n-th roots of w.)



10. Visualization of n-th roots of a complex number in the Argand plane.

Suppose w is a non-zero complex number, with an argument . The n-th roots
of a non-zero complex number w are the n vertices of the regular n-sided polygon
inscribed in the circle with centre 0 and radius {/|w| in the Argand plane, with one

vertex at the point ( = {/|w]|(cos(p/n) + isin(e/n)).
« Cubic roots:
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g w = || (cos(p) + isin(p))
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¢ = Y/Iwl(cos(p/3) +isin(p/3))
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« Quintic roots:

imaginary axis

A w = |w|(cos(p) + isin(p))

(= W(cos(-go/5) —|-_7lsin(%0/5))‘
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11. Theorem (4).

Let n be a positive integer. Write 0,, = 2% Define w,, = cos(#,,) + isin(f,).

Let w be a non-zero complex number.

Suppose ( is an n-th root of w.

Then the n-th roots of w are the n complex numbers given by €, Cwy,, Cwp?, -+, Cw, .

12. Applying De Moivre’s Theorem and Theorem (4), we can deduce the result below.
Theorem (5).
Let n be a positive integer.
Let w be a non-zero complex number. Suppose ¢ Is an argument for w.
Define ¢y = {/|w|(cos (p/n) + isin (p/n)).
1

Then the n-th root of w are given by (y, Cown, Cown?, « -+, Cown" L.



13. Proof of Theorem (4).

2T
Let n be a positive integer. Write #,, = —. Define w,, = cos(6,,) + i sin(6,,).
n
Let w be a non-zero complex number, and ¢ be an n-th root of w in the complex
numbers.
« We have (" = w.
For each m = 0,1,2,--- ,n — 1, we have (w,”)" = 1.

Then (Cw,")" = (Mw,")F =1-1F = 1.
« Let p be a complex number. Suppose p is an n-th root of w.
Then p" = w.

p\ P w
Wehave =] =—=—=1.
(C) ¢mow

Then £ is an n-th root of unity.

S

Therefore there exists some » =0,1,2,--- ,n — 1 such that g Wy, .

S

For the same r, we have p = (w,,.





