
1. Recall the notions of real part, imaginary part, conjugate and modulus, introduced
in the handout Basic algebraic results on complex numbers ‘beyond school mathe-
matics’:

Let z be a complex number. Denote the real part and the imaginary part of z by
Re(z), Im(z) respectively. (So z = Re(z) + iIm(z).)

(a) The complex conjugate of z is defined to be the complex number
Re(z)− iIm(z). It is denoted by z.

(b) The modulus of z is defined to be the non-negative real number√
(Re(z))2 + (Im(z))2. It is denoted by |z|.

Also recall the notions of polar form and argument from the handout Polar form:

Let z be a complex number.
When we write z = |z|(cos(θ) + i sin(θ)) (for some appropriate real number θ),
we say we are presenting z in its polar form.
When z ̸= 0, such a number θ is called an argument for z.
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Further recall how the polar form for the product of two complex numbers is related
to the polar forms of the two complex numbers concerned:

Suppose z, w are non-zero complex numbers, with arguments θ, φ respectively.
Then:

(a) zw = |z||w|(cos(θ + φ) + i sin(θ + φ)).
(b) The modulus of zw is |z||w|.
(c) θ + φ is an argument for zw.

real axis

imaginary axis

0

z = |z|(cos(θ) + i sin(θ))

w = |w|(cos(φ) + i sin(φ))

zw = |z||w|(cos(θ + φ) + i sin(θ + φ))
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2. Lemma (1). (Special case of De Moivre’s Theorem.)
Suppose θ is a real number.
Then for any n ∈ N\{0}, (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ).

Proof of Lemma (1).
Suppose θ is a real number.
• For any n ∈ N\{0}, denote by P (n) the proposition
(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ).

• (cos(θ) + i sin(θ))1 = cos(1 · θ) + i sin(1 · θ). Then P (1) is true.
• Let k ∈ N\{0}. Suppose P (k) is true.

Then (cos(θ) + i sin(θ))k = cos(kθ) + i sin(kθ).
We prove that P (k + 1) is true:

(cos(θ) + i sin(θ))k+1 = (cos(θ) + i sin(θ))k(cos(θ) + i sin(θ))

= (cos(kθ) + i sin(kθ))(cos(θ) + i sin(θ))

= (cos(kθ) cos(θ)− sin(kθ) sin(θ)) + i(sin(kθ) cos(θ) + cos(kθ) sin(θ))

= cos(kθ + θ) + i sin(kθ + θ) = cos((k + 1)θ) + i sin((k + 1)θ)

Hence P (k + 1) is true.
• By the Principle of Mathematical Induction, P (n) is true for any n ∈ N\{0}.
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3. De Moivre’s Theorem.
Suppose θ is a real number.
Then for any m ∈ Z, (cos(θ) + i sin(θ))m = cos(mθ) + i sin(mθ).

Proof.
Suppose θ is a real number. Pick any m ∈ Z. We have m = 0 or m > 0 or m < 0.
• (Case 1). Suppose m = 0. Then

(cos(θ) + i sin(θ))m = (cos(θ) + i sin(θ))0

= 1 = (cos(0 · θ) + i sin(0 · θ)) = cos(mθ) + i sin(mθ).

• (Case 2). Suppose m > 0.
By Lemma (1), we have (cos(θ) + i sin(θ))m = cos(mθ) + i sin(mθ).

• (Case 3). Suppose m < 0. Define n = −m. Then n ∈ N\{0}. Therefore

(cos(θ) + i sin(θ))m =
1

(cos(θ) + i sin(θ))n
=

1

cos(nθ) + i sin(nθ)

= cos(nθ)− i sin(nθ)

= cos(mθ) + i sin(mθ).

Hence in any case, (cos(θ) + i sin(θ))m = cos(mθ) + i sin(mθ).
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4. Definition. (Roots of unity.)
Suppose ζ is a complex number and n is a positive integer.
Then ζ is called an n-th root of unity if ζn = 1.

Remark. ζ is an n-th root of unity iff ζ is a root of the polynomial zn− 1 in the
complex numbers.)

According to Theorem (3), stated below, we can pinpoint, for each positive integer
n, exactly which numbers are n-th roots of unity.

5. Lemma (2).

Suppose n is a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Then ωn is an n-th root of unity.

Proof of Lemma (2).

Suppose n is a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

By De Moivre’s Theorem, we have

(ωn)
n = (cos(nθn) + i sin(nθn)) = cos(2π) + i sin(2π) = 1.
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6. Theorem (3).

Suppose n is a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Then the n-th roots of unity are the n complex numbers of modulus 1, given by

1, ωn, ωn
2, ..., ωn

n−1.

Remark. This is what the conclusion part of Theorem (3) is saying:—
• Each of the n numbers 1, ωn, ωn

2, ..., ωn
n−1 is an n-th root of unity, and

• if ζ is an n-th root of unity, then ζ is amongst the n numbers 1, ωn, ωn
2, ..., ωn

n−1.

Tacit assumption needed in the argument for Theorem (2).
A tacit assumption, known as Division Algorithm for integers, is used in the
argument. It reads:

Let u, v ∈ Z. Suppose v > 0.
Then there exist some unique q, r ∈ Z such that u = qv + r and 0 ≤ r < v.
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7. Visualization of the n-th roots of unity on the Argand plane.
For each positive integer n, the n-th roots of unity are the

n vertices of the regular n-sided polygon
inscribed in the unit circle with centre 0

in the Argand plane,

with one vertex at the point 1.

n = 3:

real axis

imaginary axis

0 1

ω3

ω3
2

n = 4:

real axis

imaginary axis

0 1

ω4 = i

−1

ω4
3 = −i
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n = 5:

real axis

imaginary axis

0 1

ω5
ω5

2

ω5
3

ω5
4

n = 6:

real axis

imaginary axis

0 1

ω6ω6
2

−1

ω6
4 ω6

5

n = 7:

real axis

imaginary axis

0 1

ω7
ω7

2

ω7
3

ω7
4

ω7
5 ω7

6

n = 8:

real axis

imaginary axis

0 1

ω8
i

ω8
3

−1

ω8
5

−i
ω8

7
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8. Proof of Theorem (3).

Suppose n is a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

(a) For each k = 0, 1, 2, · · · , n− 1, we have (ωn
k)n = (ωn

n)k = 1k = 1 by Lemma (2).
(b) Let ζ be a complex number. Suppose ζ is an n-th root of unity. Then ζn = 1.

[We want to deduce that ζ = ωn
r for some r ∈ J0, n− 1K.]

We have |ζ|n = 1. Then |ζ| = 1.
ζ has an argument, say, φ. Therefore ζ = cos(φ) + i sin(φ).
By De Moivre’s Theorem, we have

1 = ζn = (cos(φ) + i sin(φ))n = (cos(nφ) + i sin(nφ)).

Then cos(nφ) = 1 and sin(nφ) = 0.
Therefore there exists some m ∈ Z such that nφ = 2mπ.
Now φ =

m

n
· 2π = mθn.

By Division Algorithm for the integers,
there exist some q, r ∈ Z such that m = qn + r and 0 ≤ r < n.
Then we have φ = mθn = (qn + r)θn = qnθn + rθn = 2qπ + rθn.
Therefore ζ = cos(φ) + i sin(φ) = cos(rθn) + i sin(rθn) = ωn

r.
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9. Definition. (n-th roots of a complex number.)
Suppose n is a positive integer, and w, ζ are complex numbers.
Then we say ζ is an n-th root of w if ζn = w.

Remark.
ζ is an n-th root of w iff ζ is a root of the polynomial zn−w in the complex numbers.

Warning.
As we shall see from Theorem (5), whenever w is a non-zero complex number, there
will be n complex numbers which are n-th roots of w.
It is not apparent whether any should be privileged over any other.
For this reason:—
• Never write ‘the n-th root of the complex number w’ unless you are referring to a

specific n-th root of the complex number w that you have already pinpointed.
• Never write ‘ n

√
w’ unless w is a non-negative real number.

(When w is a non-negative real number, we ‘privilege’ its non-negative n-th root
over all other n-th roots of w.)
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10. Visualization of n-th roots of a complex number in the Argand plane.
Suppose w is a non-zero complex number, with an argument φ. The n-th roots
of a non-zero complex number w are the n vertices of the regular n-sided polygon
inscribed in the circle with centre 0 and radius n

√
|w| in the Argand plane, with one

vertex at the point ζ = n
√
|w|(cos(φ/n) + i sin(φ/n)).

• Cubic roots:

real axis

imaginary axis

0

w = |w|(cos(φ) + i sin(φ))

ζ = 3
√

|w|(cos(φ/3) + i sin(φ/3))

ζω3

ζω3
2
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• Quintic roots:

real axis

imaginary axis

0

w = |w|(cos(φ) + i sin(φ))

ζ = 5
√
|w|(cos(φ/5) + i sin(φ/5))

ζω5

ζω5
2

ζω5
3

ζω5
4
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11. Theorem (4).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Let w be a non-zero complex number.
Suppose ζ is an n-th root of w.
Then the n-th roots of w are the n complex numbers given by ζ, ζωn, ζωn

2, · · · , ζωn
n−1.

12. Applying De Moivre’s Theorem and Theorem (4), we can deduce the result below.
Theorem (5).
Let n be a positive integer.
Let w be a non-zero complex number. Suppose φ is an argument for w.
Define ζ0 =

n
√

|w|(cos (φ/n) + i sin (φ/n)).
Then the n-th root of w are given by ζ0, ζ0ωn, ζ0ωn

2, · · · , ζ0ωn
n−1.
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13. Proof of Theorem (4).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Let w be a non-zero complex number, and ζ be an n-th root of w in the complex
numbers.

• We have ζn = w.
For each n = 0, 1, 2, · · · , n− 1, we have (ωn

k)n = 1.
Then (ζωn

k)n = ζn(ωn
n)k = 1 · 1k = 1.

• Let ρ be a complex number. Suppose ρ is an n-th root of w.
Then ρn = w.

We have
(
ρ

ζ

)n

=
ρn

ζn
=

w

w
= 1.

Then ρ

ζ
is an n-th root of unity.

Therefore there exists some r = 0, 1, 2, · · · , n− 1 such that ρ

ζ
= ωn

r.

For the same r, we have ρ = ζωn
r.
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