1. Recall the notions of *real part*, *imaginary part*, *conjugate* and *modulus*, introduced in the handout *Basic algebraic results on complex numbers 'beyond school mathematics'*:

Let z be a complex number. Denote the real part and the imaginary part of z by $\operatorname{Re}(z)$, $\operatorname{Im}(z)$ respectively. (So $z = \operatorname{Re}(z) + i\operatorname{Im}(z)$.)

- (a) The **complex conjugate** of z is defined to be the complex number $\operatorname{Re}(z) i\operatorname{Im}(z)$. It is denoted by \overline{z} .
- (b) The **modulus** of z is defined to be the non-negative real number $\sqrt{(\operatorname{Re}(z))^2 + (\operatorname{Im}(z))^2}$. It is denoted by |z|.

Also recall the notions of *polar form* and *argument* from the handout *Polar form*:

Let z be a complex number.

When we write $z = |z|(\cos(\theta) + i\sin(\theta))$ (for some appropriate real number θ), we say we are presenting z in its **polar form**.

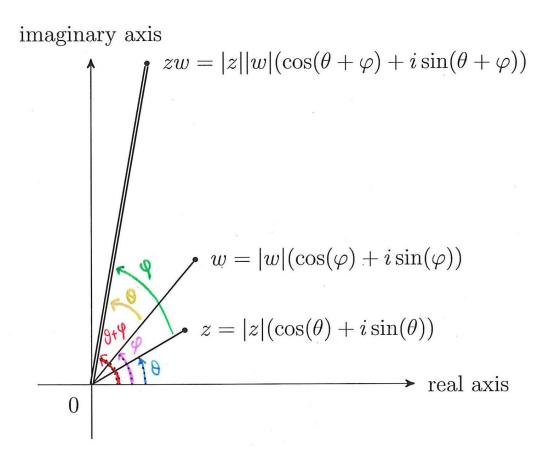
When $z \neq 0$, such a number θ is called an **argument** for z.

Further recall how the polar form for the product of two complex numbers is related to the polar forms of the two complex numbers concerned:

Suppose z, w are non-zero complex numbers, with arguments θ, φ respectively. Then:

(a)
$$zw = |z||w|(\cos(\theta + \varphi) + i\sin(\theta + \varphi))$$
.
(b) The modulus of zw is $|z||w|$.

(c) $\theta + \varphi$ is an argument for zw.



2. Lemma (1). (Special case of De Moivre's Theorem.)

Suppose θ is a real number.

Then for any $n \in \mathbb{N} \setminus \{0\}$, $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.

Proof of Lemma (1).

Suppose θ is a real number.

- For any $n \in \mathbb{N} \setminus \{0\}$, denote by P(n) the proposition $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta).$
- $(\cos(\theta) + i\sin(\theta))^1 = \cos(1 \cdot \theta) + i\sin(1 \cdot \theta)$. Then P(1) is true.
- Let $k \in \mathbb{N} \setminus \{0\}$. Suppose P(k) is true. Then $(\cos(\theta) + i\sin(\theta))^k = \cos(k\theta) + i\sin(k\theta)$. We prove that P(k+1) is true:

$$(\cos(\theta) + i\sin(\theta))^{k+1} = (\cos(\theta) + i\sin(\theta))^k (\cos(\theta) + i\sin(\theta))$$

= $(\cos(k\theta) + i\sin(k\theta))(\cos(\theta) + i\sin(\theta))$
= $(\cos(k\theta)\cos(\theta) - \sin(k\theta)\sin(\theta)) + i(\sin(k\theta)\cos(\theta) + \cos(k\theta)\sin(\theta))$
= $\cos(k\theta + \theta) + i\sin(k\theta + \theta) = \cos((k+1)\theta) + i\sin((k+1)\theta)$

Hence P(k+1) is true.

• By the Principle of Mathematical Induction, P(n) is true for any $n \in \mathbb{N} \setminus \{0\}$.

3. De Moivre's Theorem.

Suppose θ is a real number.

Then for any $m \in \mathbb{Z}$, $(\cos(\theta) + i\sin(\theta))^m = \cos(m\theta) + i\sin(m\theta)$.

Proof.

Suppose θ is a real number. Pick any $m \in \mathbb{Z}$. We have m = 0 or m > 0 or m < 0.

• (Case 1). Suppose
$$m = 0$$
. Then
 $(\cos(\theta) + i\sin(\theta))^m = (\cos(\theta) + i\sin(\theta))^0$
 $= 1 = (\cos(0 \cdot \theta) + i\sin(0 \cdot \theta)) = \cos(m\theta) + i\sin(m\theta).$

- (Case 2). Suppose m > 0. By Lemma (1), we have $(\cos(\theta) + i\sin(\theta))^m = \cos(m\theta) + i\sin(m\theta)$.
- (Case 3). Suppose m < 0. Define n = -m. Then $n \in \mathbb{N} \setminus \{0\}$. Therefore

$$(\cos(\theta) + i\sin(\theta))^m = \frac{1}{(\cos(\theta) + i\sin(\theta))^n} = \frac{1}{\cos(n\theta) + i\sin(n\theta)}$$
$$= \cos(n\theta) - i\sin(n\theta)$$
$$= \cos(m\theta) + i\sin(m\theta)$$

Hence in any case, $(\cos(\theta) + i\sin(\theta))^m = \cos(m\theta) + i\sin(m\theta)$.

4. Definition. (Roots of unity.)

Suppose ζ is a complex number and n is a positive integer. Then ζ is called an *n*-th root of unity if $\zeta^n = 1$.

Remark. ζ is an *n*-th root of unity iff ζ is a root of the polynomial $z^n - 1$ in the complex numbers.)

According to Theorem (3), stated below, we can pinpoint, for each positive integer n, exactly which numbers are n-th roots of unity.

5. Lemma (2).

Suppose *n* is a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$. Then ω_n is an *n*-th root of unity.

Proof of Lemma (2).

Suppose *n* is a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$. By De Moivre's Theorem, we have

$$(\omega_n)^n = (\cos(n\theta_n) + i\sin(n\theta_n)) = \cos(2\pi) + i\sin(2\pi) = 1$$

6. Theorem (3).

Suppose *n* is a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$. Then the *n*-th roots of unity are the *n* complex numbers of modulus 1, given by $1, \omega_n, \omega_n^2, ..., \omega_n^{n-1}$.

Remark. This is what the conclusion part of Theorem (3) is saying:—

- Each of the *n* numbers 1, ω_n , ω_n^2 , ..., ω_n^{n-1} is an *n*-th root of unity, and
- if ζ is an *n*-th root of unity, then ζ is amongst the *n* numbers 1, ω_n , ω_n^2 , ..., ω_n^{n-1} .

Tacit assumption needed in the argument for Theorem (2).

A tacit assumption, known as **Division Algorithm for integers**, is used in the argument. It reads:

Let $u, v \in \mathbb{Z}$. Suppose v > 0.

Then there exist some unique $q, r \in \mathbb{Z}$ such that u = qv + r and $0 \leq r < v$.

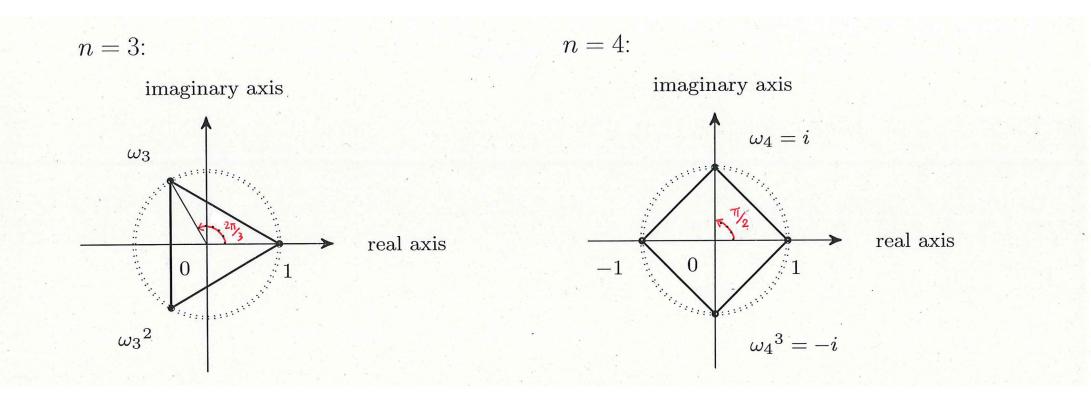
7. Visualization of the n-th roots of unity on the Argand plane.

For each positive integer n, the n-th roots of unity are the

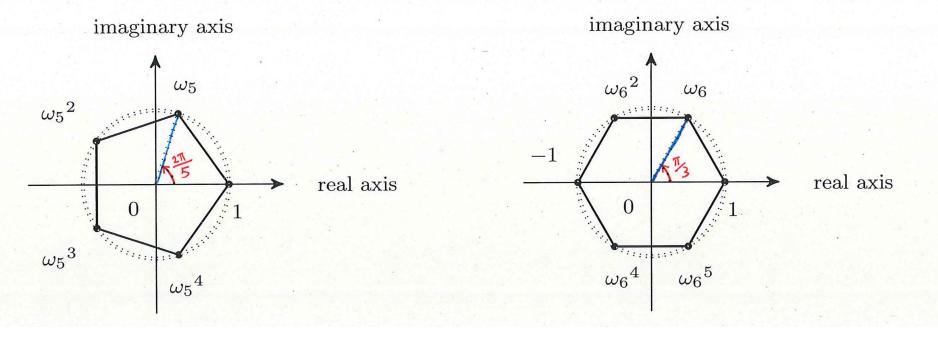
n vertices of the regular n-sided polygon inscribed in the unit circle with centre 0

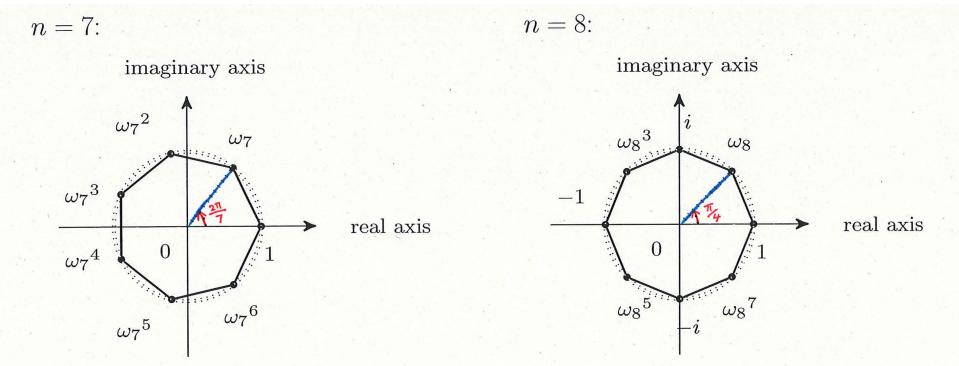
in the Argand plane,

with one vertex at the point 1.



n = 5:





Tacitly assumed result to be applied at (\$): Let u, v & Z. Suppose v > 0. Then there exist some unique q, r & Z. such that u= gv + r and 05 r < 1 v 1. 8. Proof of Theorem (3). Suppose *n* is a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$. (a) For each $k = 0, 1, 2, \dots, n-1$, we have $(\omega_n^{k})^n = (\omega_n^{n})^k = 1^k = 1$ by Lemma (2). (b) Let ζ be a complex number. Suppose ζ is an *n*-th root of unity. Then $\zeta^n = 1$. [We want to deduce that $\zeta = \omega_n^r$ for some $r \in [[0, n-1]]$.] We have 131"= 15"1=1. Then 131=1. S has an argument, say, P. Therefore S=cos(P)+isiz(P). [Ask: what more can we say about P?] By De Moivre's Theorem, $1 = 3^{n} = (\cos(\theta) + i \sin(\theta))^{n} = \cos(n\theta) + i \sin(n\theta)$. Then cor(nq) = 1 and sir(nq) = 0. Therefore there exists some mEZ such that ny=2mTT. Now $\Psi = \frac{m}{n} \cdot 2\pi = m \Theta_n$ (A) $\longrightarrow B_{y}$ Division Algorithm, there exist some $q_{v}reZ_{v}$ such that m=qn+r and $O\leq r< n$. Then $\Psi = m \Theta_{n} = (qn+r) \Theta_{n} = qn\Theta_{n}+r\Theta_{n} = 2q\pi + r\Theta_{n}$ Therefore $S = cos(\Psi) + isn(\Psi) = cos(r\Theta_{n}) + isn(r\Theta_{n}) = cO_{n}$

9. Definition. (*n*-th roots of a complex number.)

Suppose n is a positive integer, and w, ζ are complex numbers. Then we say ζ is an n-th root of w if $\zeta^n = w$.

Remark.

 ζ is an *n*-th root of w iff ζ is a root of the polynomial $z^n - w$ in the complex numbers.

Warning.

As we shall see from Theorem (5), whenever w is a non-zero complex number, there will be n complex numbers which are n-th roots of w.

It is not apparent whether any should be privileged over any other.

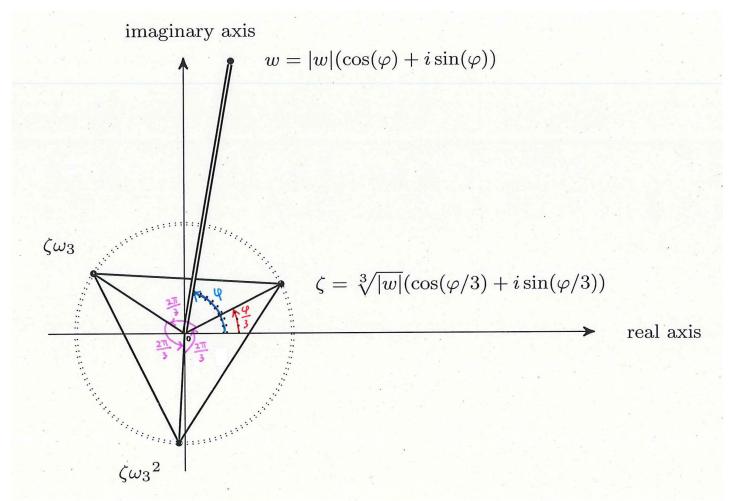
For this reason:—

- Never write 'the n-th root of the complex number w' unless you are referring to a specific n-th root of the complex number w that you have already pinpointed.
- Never write 'ⁿ√w' unless w is a non-negative real number.
 (When w is a non-negative real number, we 'privilege' its non-negative n-th root over all other n-th roots of w.)

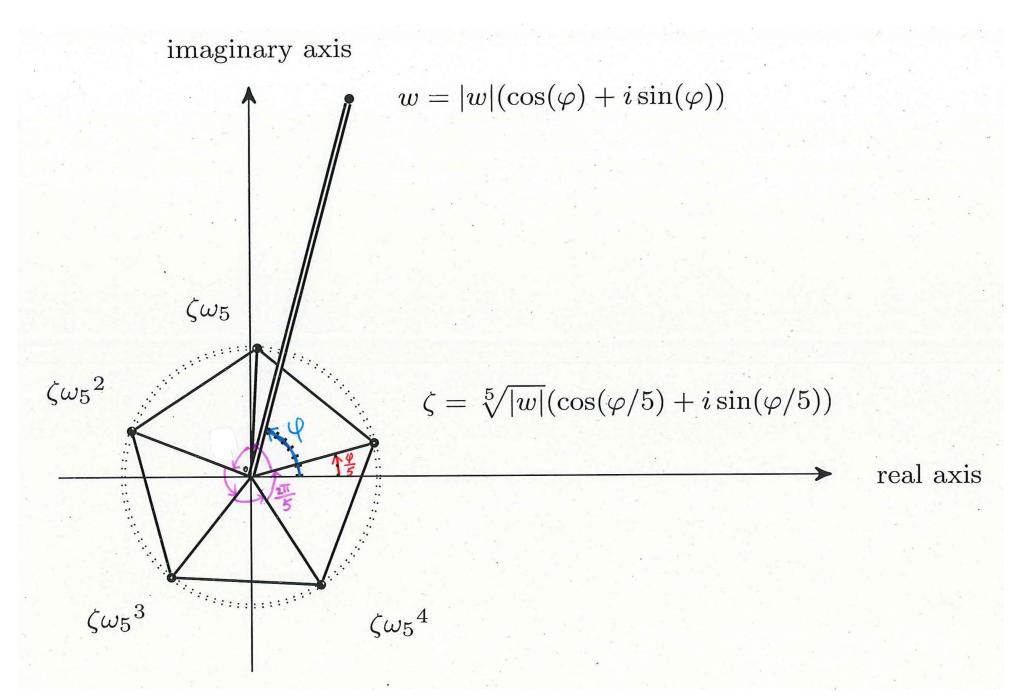
10. Visualization of n-th roots of a complex number in the Argand plane.

Suppose w is a non-zero complex number, with an argument φ . The *n*-th roots of a non-zero complex number w are the *n* vertices of the regular *n*-sided polygon inscribed in the circle with centre 0 and radius $\sqrt[n]{|w|}$ in the Argand plane, with one vertex at the point $\zeta = \sqrt[n]{|w|}(\cos(\varphi/n) + i\sin(\varphi/n))$.

• Cubic roots:



• Quintic roots:



11. Theorem (4).

Let *n* be a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$. Let *w* be a non-zero complex number. Suppose ζ is an *n*-th root of *w*.

Then the *n*-th roots of *w* are the *n* complex numbers given by $\zeta, \zeta \omega_n, \zeta \omega_n^2, \cdots, \zeta \omega_n^{n-1}$.

12. Applying De Moivre's Theorem and Theorem (4), we can deduce the result below.Theorem (5).

Let n be a positive integer.

Let w be a non-zero complex number. Suppose φ is an argument for w. Define $\zeta_0 = \sqrt[n]{|w|}(\cos(\varphi/n) + i\sin(\varphi/n)).$

Then the *n*-th root of *w* are given by $\zeta_0, \zeta_0 \omega_n, \zeta_0 \omega_n^2, \cdots, \zeta_0 \omega_n^{n-1}$.

13. Proof of Theorem (4).

Let *n* be a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$. Let *w* be a non-zero complex number, and ζ be an *n*-th root of *w* in the complex numbers.

- We have $\zeta^n = w$. For each $n = 0, 1, 2, \dots, n-1$, we have $(\omega_n^{\ k})^n = 1$. Then $(\zeta \omega_n^{\ k})^n = \zeta^n (\omega_n^{\ n})^k = 1 \cdot 1^k = 1$.
- Let ρ be a complex number. Suppose ρ is an *n*-th root of w. Then $\rho^n = w$. We have $\left(\frac{\rho}{\zeta}\right)^n = \frac{\rho^n}{\zeta^n} = \frac{w}{w} = 1$. Then $\frac{\rho}{\zeta}$ is an *n*-th root of unity. Therefore there exists some $r = 0, 1, 2, \cdots, n-1$ such that $\frac{\rho}{\zeta} = \omega_n^r$.

For the same r, we have $\rho = \zeta \omega_n^r$.