
MATH1050 Polar form

1. Whatever you have learnt (and tacitly taken for granted) about polar coordinates in coordinate geometry in school
maths can be adapted to complex numbers through Theorem (1).

Theorem (1).

Suppose z is a complex number. Then there exists some θ ∈ R such that z = |z|(cos(θ) + i sin(θ)).
Remark.

(a) When we write z = Re(z) + iIm(z), we say we are presenting z in its standard form.

(b) When we write z = |z|(cos(θ)+ i sin(θ)) (for some appropriate θ), we say we are presenting z in its polar form.

Pictorial visualization of the content of Theorem (1).
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2. Proof of Theorem (1). Suppose z be a complex number. Then we have z = 0 or (z ̸= 0 and Re(z) ≥ 0) or (z ̸= 0

and Re(z) < 0).

• (Case 1). Suppose z = 0. Then (it is trivially true that) z = 0 = |z|(cos(0) + i sin(0)).

• (Case 2). Suppose z ̸= 0 and Re(z) ≥ 0.

Note that −1 ≤ Im(z)

|z|
≤ 1.

Define θ = arcsin(
Im(z)

|z|
). We have Im(z) = |z| sin(θ), and Re(z) = |z| cos(θ). Then z = |z|(cos(θ) + i sin(θ)).

• (Case 3). Suppose z ̸= 0 and Re(z) < 0. Define w = −z. We have w ̸= 0 and Re(w) > 0.

By the argument for (Case 2), there exists some θ′ ∈ R, namely θ′ = arcsin(
Im(w)

|w|
), such that w = |w|(cos(θ′)+

i sin(θ′)).
Define θ = θ′ + π. Then z = −w = −|w|(cos(θ′) + i sin(θ′)) = |w|(− cos(θ′)− i sin(θ′)) = |z|(cos(θ) + i sin(θ)).

3. Definition. (Arguments and principal argument for a complex number.)
Let z be a non-zero complex number, and θ be a real number.
Suppose the equality z = |z|(cos(θ) + i sin(θ)) holds. Then θ is said to be an argument for z.

Further suppose −π < θ ≤ π. Then θ is called the principal argument for z, and we write θ = arg(z).
Remark.

• We do not write ‘the argument of the (non-zero) complex number so-and-so’, because the same non-zero complex
number has ‘infinitely many’ different arguments. (For example, for each n ∈ Z, 2nπ is an argument of 1.)

• However, each non-zero complex number has exactly one principal argument. So we should write ‘the principal
argument of the (non-zero) complex number so-and-so’.

4. Theorem (2). (Multiplication and division for complex numbers in polar form.)
Suppose z, w are non-zero complex numbers, with arguments θ, φ respectively. Then:
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(a) zw = |z||w|(cos(θ + φ) + i sin(θ + φ)), and z

w
=

|z|
|w|

(cos(θ − φ) + i sin(θ − φ)).

(b) The modulus of zw is |z||w|, and the modulus of z

w
is |z|

|w|
.

(c) θ + φ is an argument for zw, and θ − φ is an argument for z

w
.

Proof of Theorem (2). Exercise. (Apply the ‘compound-angle formulae’ for the sine and cosine functions.)
Pictorial visualization of multiplication for complex numbers.
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5. Corollary to Theorem (2).

Suppose z is a non-zero complex number, and θ is an argument of z. Then z2 = |z|2(cos(2θ) + i sin(2θ)).

6. Definition. (Square roots of a complex number.)

Let w, z be complex numbers. We say that z is a square root of w if w = z2.
Examples.

(a) i,−i are square roots of −1.

(b) 1,−1 are square roots of 1.

(c) 1√
2
+

1√
2
i, − 1√

2
− 1√

2
i are square roots of i.

(d)
√
3

2
+

1

2
i, −

√
3

2
− 1

2
i, are square roots of 1

2
+

√
3

2
i.

Warning. As these examples illustrate, there may be more than one square root for a given complex number.
In fact, as Theorem (3) will tell us, whenever w is a non-zero complex number, w will have exactly two square roots.
It is not apparent whether any should be privileged over any other.
For this reason:—

• Never write ‘the square root of the complex number w’ unless you are referring to a specific square root of the
complex number w that you have already pinpointed.

• Never write ‘
√
w’ unless w is a non-negative real number.

(When w is a non-negative real number, we ‘privilege’ its non-negative square root over its negative square root.)

7. Theorem (3).

Let w, ζ be non-zero complex numbers, and φ be an argument of w. Suppose w = ζ2.

Then ζ =
√
|w|

(
cos

(φ
2

)
+ i sin

(φ
2

))
or ζ = −

√
|w|

(
cos

(φ
2

)
+ i sin

(φ
2

))
.
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Remark. Hence the square roots of w are the two numbers√
|w|

(
cos

(φ
2

)
+ i sin

(φ
2

))
, −

√
|w|

(
cos

(φ
2

)
+ i sin

(φ
2

))
.

Proof of Theorem (3). Apply Corollary to Theorem (2).

8. Geometric interpretation of extraction of square roots.
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9. Theorem (4). (Roots of quadratic polynomials with complex coefficients.)
Let a, b, c be complex numbers, with a ̸= 0. Let α be a number. Let f(z) be the quadratic polynomial given by
f(z) = az2 + bz + c.

(a) Suppose α is a root of f(z). Let β = − b

a
− α. Then the statements below hold:

i. f(z) = a(z − α)(z − β) as polynomials.
ii. β is a root of f(z).

iii. αβ =
c

a
.

(b) Define ∆f = b2 − 4ac. We call ∆f the discriminant of the polynomial f(z). Then the statements below hold:

i. f(z) = a

[(
z +

b

2a

)2

− ∆f

4a2

]
as polynomials.

(This polynomial equality is referred as ‘completing the square for the quadratic polynomial f(z)’.)

ii. Suppose ∆f ̸= 0. Suppose σ is a square root of ∆f

4a2
. Define α± = − b

2a
± σ respectively. Then f(z)

has two distinct roots amongst the complex numbers, namely α+, α−, and f(z) is completely factorized as
f(z) = a(z − α+)(z − α−).

iii. Now suppose ∆f = 0 instead. Then f(z) has a repeated root, namely, −b/2a, amongst the complex numbers,
and f(z) is completely factorized as f(z) = a(z + b/2a)2.

Remark. What the above result says is that each quadratic polynomial with complex coefficients f(z) has a pair of
roots and ‘factorizes into a pair of linear polynomials’. Moreover, if the polynomial f(z) is given by f(z) = az2+bz+c

and the pair of roots concerned are α, β, then α+β = − b

a
and αβ =

c

a
. Furthermore, regarding the quadratic equation

az2 + bz + c = 0 —— (⋆)

with unknown x, there are exactly two mutually exclusive possibilities:

(1) Suppose ∆f ̸= 0. Then the equation (⋆) has exactly two distinct solutions amongst the complex numbers.

(2) Suppose ∆f = 0. Then the equation (⋆) has exactly one repeated solution amongst the complex numbers.

In any case, the equation (⋆) has at least one solution amongst the complex numbers.

Proof of Theorem (4). Exercise. (Generalize what you have learnt about quadratic polynomials with real
coefficients in school maths.)
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10. Appendix: Complex numbers and polynomials.
Theorem (4) is significant in two ways:

(a) This result for quadratic polynomials is a ‘baby case’ of the Fundamental Theorem of Algebra, first proved
by Gauss, which says:—

Every non-constant polynomial with coefficients in complex numbers has at least one root amongst the
complex numbers.

In fact Gauss gave several proofs for this result.
(You will probably learn one proof in your complex variables course.)

(b) We can express all the roots of every quadratic polynomial with coefficients in complex numbers in terms of its
coefficients with the help of the operations +,−,×,÷, and with the taking of (square) roots.
So it is natural to ask whether we can do the same thing for cubic polynomials, quartic polynomials, quintic
polynomials et cetera.
The answer is yes for cubic polynomials and quartic polynomials, but no in general for higher-degree polynomials.
(You will know more about these in your abstract algebra course.)
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