
1. Whatever you have learnt (and tacitly taken for granted) about polar coordinates in
coordinate geometry in school maths can be adapted to complex numbers through
Theorem (1).

Theorem (1).
Suppose z is a complex number.
Then there exists some θ ∈ R such that z = |z|(cos(θ) + i sin(θ)).
Pictorial visualization of the content of Theorem (1).
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Theorem (1).
Suppose z is a complex number.
Then there exists some θ ∈ R such that z = |z|(cos(θ) + i sin(θ)).

Remark.

(a) When we write
z = Re(z) + iIm(z),

we say we are presenting z in its standard form.
(b) When we write

z = |z|(cos(θ) + i sin(θ))

(for some appropriate θ), we say we are presenting z in its polar form.
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2. Proof of Theorem (1).
Suppose z be a complex number.
Then we have z = 0 or (z ̸= 0 and Re(z) ≥ 0) or (z ̸= 0 and Re(z) < 0).

• (Case 1). Suppose z = 0.
Then (it is trivially true that) z = 0 = |z|(cos(0) + i sin(0)).

• (Case 2). Suppose z ̸= 0 and Re(z) ≥ 0.

Note that −1 ≤ Im(z)

|z|
≤ 1.

Define θ = arcsin(
Im(z)

|z|
).

We have Im(z) = |z| sin(θ), and
Re(z) = |z| cos(θ).
Then z = |z|(cos(θ) + i sin(θ)).

• · · ·
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Proof of Theorem (1).
Suppose z be a complex number.
Then we have z = 0 or (z ̸= 0 and Re(z) ≥ 0) or (z ̸= 0 and Re(z) < 0).

• (Case 1). · · ·
• (Case 2). · · ·

• (Case 3). Suppose z ̸= 0 and Re(z) < 0.
Define w = −z.
We have w ̸= 0 and Re(w) > 0.
By the argument for (Case 2),

there exists some θ′ ∈ R, namely θ′ = arcsin(
Im(w)

|w|
),

such that w = |w|(cos(θ′) + i sin(θ′)).
Define θ = θ′ + π. Then

z = −w = −|w|(cos(θ′) + i sin(θ′))

= |w|(− cos(θ′)− i sin(θ′)) = |z|(cos(θ) + i sin(θ)).
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3. Definition. (Arguments and principal argument for a complex num-
ber.)
Let z be a non-zero complex number, and θ be a real number.
Suppose the equality z = |z|(cos(θ) + i sin(θ)) holds.
Then θ is said to be an argument for z.
Further suppose −π < θ ≤ π.
Then θ is called the principal argument for z, and we write θ = arg(z).
Remark.

• We do not write
‘the argument of the (non-zero) complex number so-and-so’,

because the same non-zero complex number has ‘infinitely many’ different argu-
ments. (For example, for each n ∈ Z, 2nπ is an argument of 1.)

• However, each non-zero complex number has exactly one principal argument.
So we should write

‘the principal argument of the (non-zero) complex number so-and-so’.
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4. Theorem (2). (Multiplication and division for complex numbers in
polar form.)
Suppose z, w are non-zero complex numbers, with arguments θ, φ respectively. Then:

(a) zw = |z||w|(cos(θ + φ) + i sin(θ + φ)), and
z

w
=

|z|
|w|

(cos(θ − φ) + i sin(θ − φ)).

(b) The modulus of zw is |z||w|, and the modulus of z

w
is |z|
|w|

.

(c) θ + φ is an argument for zw, and θ − φ is an argument for z

w
.

Proof of Theorem (2). Exercise. (Apply the ‘compound-angle formulae’ for
the sine and cosine functions.)
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Pictorial visualization of multiplication for complex numbers.
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z = |z|(cos(θ) + i sin(θ))

w = |w|(cos(φ) + i sin(φ))

zw = |z||w|(cos(θ + φ) + i sin(θ + φ))

5. Corollary to Theorem (2).
Suppose z is a non-zero complex number, and θ is an argument of z.
Then z2 = |z|2(cos(2θ) + i sin(2θ)).
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6. Definition. (Square roots of a complex number.)
Let w, z be complex numbers.
We say that z is a square root of w if w = z2.

Examples.

(a) i,−i are square roots of −1.

(b) 1,−1 are square roots of 1.

(c) 1√
2
+

1√
2
i, − 1√

2
− 1√

2
i are square roots of i.

(d)
√
3

2
+
1

2
i, −

√
3

2
− 1

2
i, are square roots of 1

2
+

√
3

2
i.
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Warning.
As these examples illustrate, there may be more than one square root for a given
complex number.
In fact, as Theorem (3) will tell us, whenever w is a non-zero complex number, w
will have exactly two square roots.
It is not apparent whether any should be privileged over any other.
For this reason:—

• Never write
‘the square root of the complex number w’

unless you are referring to a specific square root of the complex number w that
you have already pinpointed.

• Never write
‘
√
w’

unless w is a non-negative real number.
(When w is a non-negative real number, we ‘privilege’ its non-negative square root
over its negative square root.)
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7. Theorem (3).
Let w, ζ be non-zero complex numbers, and φ be an argument of w.
Suppose w = ζ2.
Then ζ =

√
|w|

(
cos

(φ
2

)
+ i sin

(φ
2

))
or ζ = −

√
|w|

(
cos

(φ
2

)
+ i sin

(φ
2

))
.

Remark.
Hence the square roots of w are the two numbers√

|w|
(
cos

(φ
2

)
+ i sin

(φ
2

))
, −

√
|w|

(
cos

(φ
2

)
+ i sin

(φ
2

))
.

Proof of Theorem (3). Apply Corollary to Theorem (2).
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8. Geometric interpretation of extraction of square roots.

real axis

imaginary axis

0

w = |w|(cos(φ) + i sin(φ))

ζ1 =
√
|w|(cos(φ/2) + i sin(φ/2))

ζ2 = −
√

|w|(cos(φ/2) + i sin(φ/2))
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9. Theorem (4). (Roots of quadratic polynomials with complex coefficients.)
Let a, b, c be complex numbers, with a ̸= 0. Let α be a number. Let f (z) be the quadratic polynomial
given by f (z) = az2 + bz + c.

(a) Suppose α is a root of f (z). Let β = −b

a
− α. Then the statements below hold:

i. f (z) = a(z − α)(z − β) as polynomials.
ii. β is a root of f (z).
iii. αβ =

c

a
.

(b) Define ∆f = b2 − 4ac. We call ∆f the discriminant of the polynomial f (z). Then the statements
below hold:

i. f (z) = a

[(
z +

b

2a

)2

− ∆f

4a2

]
as polynomials.

(This polynomial equality is referred as ‘completing the square for the quadratic polynomial
f (z)’.)

ii. Suppose ∆f ̸= 0. Suppose σ is a square root of ∆f

4a2
. Define α± = − b

2a
± σ respectively.

Then f (z) has two distinct roots amongst the complex numbers, namely α+, α−, and f (z) is
completely factorized as f (z) = a(z − α+)(z − α−).

iii. Now suppose ∆f = 0 instead. Then f (z) has a repeated root, namely, −b/2a, amongst the
complex numbers, and f (z) is completely factorized as f (z) = a(z + b/2a)2.
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Remark.
What the above result says is that each quadratic polynomial with complex coef-
ficients f (z) has a pair of roots and ‘factorizes into a pair of linear polynomials’.
Moreover, if the polynomial f (z) is given by f (z) = az2 + bz + c and the pair of

roots concerned are α, β, then α + β = −b

a
and αβ =

c

a
. Furthermore, regarding

the quadratic equation

az2 + bz + c = 0 —— (⋆)

with unknown x, there are exactly two mutually exclusive possibilities:

(1) Suppose ∆f ̸= 0. Then the equation (⋆) has exactly two distinct solutions amongst
the complex numbers.

(2) Suppose ∆f = 0. Then the equation (⋆) has exactly one repeated solution amongst
the complex numbers.

In any case, the equation (⋆) has at least one solution amongst the complex numbers.
Proof of Theorem (4). Exercise. (Generalize what you have learnt about
quadratic polynomials with real coefficients in school maths.)
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10. Appendix: Complex numbers and polynomials.
Theorem (4) is significant in two ways:

(a) This result for quadratic polynomials is a ‘baby case’ of the Fundamental The-
orem of Algebra, first proved by Gauss, which says:—

Every non-constant polynomial with coefficients in complex numbers has at least
one root amongst the complex numbers.

In fact Gauss gave several proofs for this result.
(You will probably learn one proof in your complex variables course.)

(b) We can express all the roots of every quadratic polynomial with coefficients in com-
plex numbers in terms of its coefficients with the help of the operations +,−,×,÷,
and with the taking of (square) roots.
So it is natural to ask whether we can do the same thing for cubic polynomials,
quartic polynomials, quintic polynomials et cetera.
The answer is yes for cubic polynomials and quartic polynomials, but no in general
for higher-degree polynomials.
(You will know more about these in your abstract algebra course.)
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