
MATH1050 Examples: Divisibility, Division Algorithm, rationals and irrationals.

1. Prove the statements below:

(a) Let x, n ∈ Z. Suppose x is divisible by n. Then for any y ∈ Z, (x+ 2y)3 + (x− 2y)3 is divisible by 2n.
(b) Let x, n ∈ Z. Suppose x is divisible by n. Then for any y ∈ Z, (3x+ y)5 + (3x− y)5 is divisible by 6n.
(c) Let x, n ∈ Z. Suppose x is divisible by n. Then for any y ∈ Z, (5x+ y)7 + (5x− y)7 is divisible by 10n.
(d) Let x, y, n ∈ Z. Suppose x is divisible by n and y is divisible by n. Then, for any r, s, t ∈ Z, rx2+sxy+ty2

is divisible by n2.

2. Let n be an integer greater than 1.

(a) Prove that
(

2n− 1

n− 1

)
−

(
2n− 1

n− 2

)
=

(2n)!

(n!)[(An+B)!]
. Here A,B are appropriate positive integers

whose respective values you have to determine explicitly.

(b) Hence, or otherwise prove that
(

2n

n

)
is divisible by n+ 1.

3. Let n be a positive integer.

(a) Prove that 2

(
3n+ 1

n

)
−

(
3n+ 1

n+ 1

)
=

(3n+ 1)!

[(n+A)!][(2n+B)!]
. Here A,B are appropriate positive

integers whose respective values you have to determine explicitly.

(b) Hence, or otherwise prove that
(

3n+ 1

n

)
is divisible by n+ 1, and

(
3n+ 1

n+ 1

)
is divisible by 2n+ 1.

4. Apply mathematical induction to justify each of the statements below:

(a) n(2n2 + 1) is divisible by 3 for any n ∈ N.
(b) (2n+ 1)(2n+ 3)(2n+ 5) is divisible by 3 for any n ∈ N.
(c) (2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)(2n+ 9) is divisible by 5 for any n ∈ N.
(d) 24n+3 + 33n+1 is divisible by 11 for any n ∈ N.
(e) 2n+1 + 32n−1 is divisible by 7 for any positve integer n.
(f) 34n+2 + 26n+3 is divisible by 17 for any n ∈ N.

5. Apply mathematical induction to justify each of the statements below. You have to think carefully which
proposition is to be formulated and proved by mathematical induction. (This will become apparent when you
are attempting to work out the ‘inductive argument’.)

(a) For any n ∈ N, (
√
3 + 1)2n+1 − (

√
3− 1)2n+1 is an integer which is divisible by 2n+1.

(b) For any n ∈ N, (3 +
√
5)n+1 + (3−

√
5)n+1 is an integer which is divisible by 2n+1.

6. Prove the statements below:

(a) Let x be a positive real number, r be a positive rational number, and n be an integer greater than 1.
Suppose x is an irrational number. Then n

√
x+ r is an irrational number.

(b) Let r, s, t ∈ R. Suppose r is a non-zero rational number and s is an irrational number. Then at least one
of rs+ t, rs− t is an irrational number.

7. Prove the statements below. Take for granted the validity of Euclid’s Lemma.

(a) 5
√
7 is irrational.

(b) Let p be a positive prime number, and Q be an integer greater than 1. The number Q
√
p is irrational.

8. In this question, take for granted the validity of Euclid’s Lemma.

(a) Prove the statement (♯):
(♯) Suppose p, q are distinct positive prime numbers. Then √

pq is irrational.
Remark. You may need to apply Euclid’s Lemma for several times.

(b) i. Prove the statement (†):
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(†) Let a, b, c be rational numbers. Suppose a, c are positive and
√
a,
√
c are irrational numbers.

Further suppose
√
a = b+

√
c. Then b = 0.

ii. Hence, or otherwise, prove the statement (‡):
(‡) Let s, t, u, v be rational numbers. Suppose t, v are positive and

√
t,
√
v are irrational numbers.

Further suppose s+
√
t = u+

√
v. Then s = u and t = v.

(c) Let A,B, p, q be positive integers. Suppose
√
B is an irrational number. Further suppose p, q are distinct

prime numbers. Prove the statements below:

i.
√
A+ 2

√
B =

√
p+

√
q iff (A = p+ q, B = pq, and A > 2

√
B).

ii.
√
A+ 2

√
B =

√
p+

√
q iff

√
|A− 2

√
B| = |√p−√

q|.

9. Apply mathematical induction to justify the statements below:

(a) For any integer n greater than 1, n is a prime number or a product of at least two prime numbers.
(b) For any integer n greater than 1, if p1, p2, · · · , ps, q1, q2, · · · , qt are prime numbers, 0 < p1 ≤ p2 ≤ · · · ≤ ps,

0 < q1 ≤ q2 ≤ · · · ≤ qt, n = p1p2 · ... · ps and n = q1q2 · ... · qt, then s = t and p1 = q1, p2 = q2, ... , ps = qs.

Remark. In the argument for the second statement, take for granted Euclid’s Lemma.
Further remark. The two statements are respectively the existence part and the uniqueness part of the
Fundamental Theorem of Arithmetic, which can be formulated (in a compact manner) as:

For any integer n greter than 1, there are some unique positive prime numbers p1, p2, · · · , ps such that
p1 ≤ p2 ≤ · · · ≤ ps and n = p1p2 · ... · ps.

In plain words, this result says that every integer greater than 1 can be ‘factorized’ into a product of prime
numbers in one and only one way, up to re-ordering of the factors in the product.

10. (a) Prove the statement (♯):
(♯) Let n be a non-negative integer, and a0, a1, a2, · · · , an−1 be integers.

Suppose α is a rational number, and a0 + a1α+ a2α
2 + · · ·+ an−1α

n−1 + αn = 0.
Then α is an integer.

Remark. Take for granted Euclid’s Lemma and the existence part of the Fundamental Theorem of
Arithmetic.
Further remark. The statement (♯) can be re-formulated in terms of polynomials and their roots:

• Let f(x) be a polynomial whose coefficients are integers and whose leading coefficient is 1. Suppose
α is a rational root of f(x). Then α is an integer.

(b) i. By applying the statement (♯), or otherwise, prove that cos

(
2π

9

)
is irrational.

ii. Hence, or otherwise, deduce that each of the real numbers below is irrational:

A. cos
(π
9

)
B. sin

(π
9

)
C. cos

( π

18

)
D. sin

( π

18

)
E. cos

(
4π

9

)
F. sin

(
4π

9

) G. sin

(
2π

9

)

11. Prove the statements below. You may take Euclid’s Lemma for granted.

(a) Suppose m,n ∈ Z. Then m2 − n2 is divisible by 2 iff m− n is divisible by 2.

(b) Suppose m,n ∈ Z. Then m3 − n3 is divisible by 3 iff m− n is divisible by 3.

(c) Suppose m,n ∈ Z. Then m5 − n5 is divisible by 5 iff m− n is divisible by 5.

Remark. What if 2, 3, 5 respectively is replaced by 7? Or 11? Or 13? Can you formulate an appropriate
conjecture which generalize the statements considered here? How about proving the conjecture?

12. We recall/introduce the definition for the notion of congruence modulo n:

Let n be a positive integer, and x, y be integers. We say that x is congruent to y modulo n if x − y is
divisible by n. We write x ≡ y(mod n).

Let p be a positive prime number. Prove the statements below:
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(a) For any r ∈ J1, p− 1K, ( p

r

)
is divisible by p.

(b) For any x, y ∈ Z, (x+ y)p ≡ xp + yp(mod p).
(c) For any x ∈ N\{0}, xp ≡ x(mod p).
(d) For any x ∈ Z, xp ≡ x(mod p).

Remark. In part (a), you may need Euclid’s Lemma at some stage of the argument. In part (b), apply the
Binomial Theorem. In part (c), apply mathematical induction. The statement in part (d) is a ‘generalization’
of the result in part (c), and is known as Fermat’s Little Theorem. To prove it, make good use of part (c)
where applicable.

13.♣ Prove the statement (♯):

(♯) Let p,m, n be positive integers. Suppose p > 1 and m > n > 1. Suppose r is the remainder in division of

m by n. Then the remainder in the division of pm − 1

p− 1
by pn − 1

p− 1
is pr − 1

p− 1
.

Remark. It looks obvious that the result is a consequence of Division Algorithm. The question is: how do
you apply it in the argument?

14. (a) Take for granted the validity of the statement below:
(♯) Let n ∈ N. Let x, y, u, v ∈ Z. Suppose x ≡ u(mod n) and y ≡ v(mod n). Then x+ y ≡ u+ v(mod n)

and xy ≡ uv(mod n).
Let n ∈ N. Apply mathematical induction to prove each of the statements below:

i. Let t ∈ N\{0, 1}. Let k1, k2, · · · , kt, ℓ1, ℓ2, · · · , ℓt ∈ Z. Suppose ki ≡ ℓi(mod n) for each i. Then
k1 + k2 + · · ·+ kt ≡ ℓ1 + ℓ2 + · · ·+ ℓt(mod n).

ii. Let t ∈ N\{0, 1}. Let k1, k2, · · · , kt, ℓ1, ℓ2, · · · , ℓt ∈ Z. Suppose ki ≡ ℓi(mod n) for each i. Then
k1k2 · · · kt ≡ ℓ1ℓ2 · · · ℓt(mod n).

(b) i. Let m,n, r ∈ Z. Suppose n ̸= 0 and 0 ≤ r < n. Prove that r is the remainder in the division of m by
n iff m ≡ r(mod n).

ii. A. What is the remainder in the division of 10100 by 7?
B. What is the remainder in the division of 10100 by 13?
Remark. You can make use of the definition of ‘congruence modulo n’ and the results of the
previous part carefully to obtain the answer very quickly.

15. (a) Prove the statements below:

i. For any x ∈ N, there exist some p ∈ N, a0, a1, · · · , ap ∈ J0, 9K such that x =

p∑
k=0

ak10
k and ap ̸= 0.

ii. For any x ∈ N, there are at most one p ∈ N, and for each j = 0, 1, 2 · · · , p, at most one aj ∈ J0, 9K
such that x =

p∑
k=0

ak10
k and ap ̸= 0.

Remark. So altogether the existence-and-uniqueness statement below holds:

(♯) For any x ∈ N, there exist some unique p ∈ N, a0, a1, · · · , ap ∈ J0, 9K such that x =

p∑
k=0

ak10
k and

ap ̸= 0.
By virtue of this existence-and-uniqueness statement, each natural number x may be presented as the

chain of symbols apap−1 · · · a1a0, understood as the sum x =

p∑
k=0

ak10
k, in which a0, a1, · · · , ap are the

uniquely determined integers amongst 0, 1, · · · , 9 according to (♯). The presentation x = apap−1 · · · a1a0
is referred to as the decimal notation of the natural number n. We refer to a0, a1, · · · , ap as the digits
of x; a0 is the last digit, a1 as the second-last digit, et cetera.

(b) i. Prove the statements below:
A. Let n ∈ N. Suppose the last digit of n in its decimal notation is divisible by 2. Then n is divisible

by 2.
B. Let n ∈ N. Suppose the number defined as expressed by the last two digits of n in its decimal

notation is divisible by 4. Then n is divisible by 4.
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C. Let n ∈ N. Suppose the number defined as expressed by the three digits of n in its decimal
notation is divisible by 8. Then n is divisible by 8.

ii. Can you generalize the above results? Formulate a conjecture for the general situation and prove the
conjecture.

(c) Prove the statements below.
i. Let n ∈ N. Suppose the sum of the digits of n is divisible by 3. Then n is divisible by 3.
ii. Let n ∈ N. Suppose the sum of the digits of n is divisible by 9. Then n is divisible by 9.

16. Consider each of the pairs of integers below. Apply the Euclidean Algorithm to find their greatest common
divisor.

(a) 14, 35 (b) 11, 15 (c) 180, 252 (d) 1368, 1278

17. (a) Apply the Euclidean Algorithm to prove the statements below:
i. Suppose n ∈ N\{0, 1}. Then gcd(n, n+ 1) = 1.
ii. Suppose n ∈ N\{0, 1}. Then gcd(2n− 1, 2n+ 1) = 1.

(b) Conjecture what can be said about gcd(3n− 1, 3n+ 1) for each n ∈ N\{0, 1}. Formulate your conjecture
appropriately as a mathematical statement.
Prove your conjecture.

18. (a) Let a, b ∈ Z. Suppose a, b are not both zero.
Let I = {x ∈ Z : There exist some h, k ∈ Z such that x = ha+ kb}.
Define S = I ∩ (N\{0}). Apply the Well-Ordering Principle for Integers on the set S to prove that
gcd(a, b) ∈ I.
Remark. This is a ‘clean’ argument for ‘Bezôut’s Identity’; the trade-off is that it does not tell us
how to perform the calculations to pick out gcd(a, b). The set I will be referred to as the ‘ideal generated
by a, b in the commutative ring Z’.

(b) For any integers p, q, we define

⟨p⟩ = {x ∈ Z : There exists some h ∈ Z such that x = hp},
⟨p, q⟩ = {x ∈ Z : There exist some h, k ∈ Z such that x = hp+ kq}

Prove that ⟨a, b⟩ = ⟨gcd(a, b)⟩ for any a, b ∈ Z.

19. (a) Prove the statement below:
• Suppose a, b, c ∈ Z. Then c is a common divisor of a, b iff gcd(a, b) is divisible by c.

(b) Let ℓ,m, n ∈ Z. Write g = gcd(gcd(ℓ,m), n). Prove the statements below:
i. Each of ℓ,m, n is divisible by g.
ii. For any d ∈ Z, if each of ℓ,m, n is divisble by d then |d| ≤ g.
iii. If ℓ = m = n = 0 then g = 0.
iv. Suppose c ∈ Z. Then c is a common divisor of ℓ,m, n iff g is divisible by c.

Remark. Because of the above, it makes sense to refer to the number gcd(gcd(ℓ,m), n) as the greatest
common divisor of ℓ,m, n, and simply write gcd(gcd(ℓ,m), n) as gcd(ℓ,m, n). We may further inductively
define the greatest common divisor for four, five, six, ... integers. Moreover, to compute the greatest com-
mon divisor of n integers a1, a2, · · · , an, we may iteratively compute gcd(a1, a2), gcd(gcd(a1, a2), a3), ...,
and gcd(... gcd(gcd(a1, a2), a3)..., an) in succession. The last number will turn out to be gcd(a1, a2, · · · , an).

(c) Prove the statement below:
• Suppose ℓ,m, n ∈ Z. Then there exist some r, s, t ∈ Z such that gcd(ℓ,m, n) = rℓ+ sm+ tn.

Remark. It will turn out that when ℓ,m, n are not all zero, gcd(ℓ,m, n) is the smallest positive integer
in the set

I = {x ∈ N : There exist some u, v, w ∈ Z such that x = uℓ+ vm+ wn}.

20. We introduce the definitions below:

• Let a, b,m ∈ Z. We say m is a common multiple of a, b if m is divisible by each of a, b.
• Let a, b ∈ Z.

∗ Suppose both of a, b are non-zero. Then the least common multiple of a, b is defined to be the
multiple of a, b of least value amongst all positive common multiples of a, b. It is denoted by lcm(a, b).

∗ Suppose a = 0 or b = 0. Then the least common multiple of a, b is defined to be 0, and we write
lcm(a, b) = 0.

Without applying the Fundamental Theorem of Arithmetic, prove that for any a, b ∈ N, lcm(a, b) gcd(a, b) = ab.
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