
MATH1050 Principle of Mathematical Induction and Well-ordering Principle for Integers.

1. Recall the the Principle of Mathematical Induction (UPMI):

Let P (n) be a predicate with variable n.
Suppose the statement P (0) is true.
Further suppose that for any k ∈ N, if the statement P (k) is true then the statement P (k + 1) is true.
Then the statement P (n) is true for any n ∈ N.

Also recall the definition for the notion of least element:

Suppose A is a subset of R, and λ ∈ A. Then λ is said to be a least element of A if for any x ∈ A, λ ≤ x.

Further recall the Well-ordering Principle for Integers (WOPI):

Let S be a subset of N. Suppose S is non-empty. Then S has a least element.

We are going to explain why (WOPI) and (UPMI) are logically equivalent.
As preparation, we have to introduce two statements respectively known as the Set-theoretic Formulation of the Principle
of Mathematical Induction and the Set-theoretic Formulation of the Second Principle of Mathematical Induction.

2. Principle of Mathematical Induction, (set-theoretic formulation). (SPMI.)
Let T be a subset of N.
Suppose 0 ∈ T .
Further suppose that for any k ∈ N, if k ∈ T then k + 1 ∈ T .
Then T = N.

Second Principle of Mathematical Induction, (set-theoretic formulation). (SPMI2.)
Let U be a subset of N.
Suppose 0 ∈ U .
Further suppose that for any k ∈ N, if 0, 1, 2, · · · , k ∈ U then k + 1 ∈ U .
Then U = N.

3. Logical equivalence between the Principle of Mathematical Induction and the Well-ordering Principle.
The logical equivalence of the statements (UPMI) and (WOPI) is a consequence of Theorem (1) and Theorem (2).

Theorem (1).

The statements (UPMI), (SPMI) are logically equivalent.

Theorem (2).

The statements (WOPI), (SPMI), (SPMI2) are logically equivalent.

4. Proof of Theorem (1).

Argument for ‘(SPMI)=⇒(UPMI)’:

Assume (SPMI) holds:
∗ Let S be a subset of N. Suppose 0 ∈ S. Further suppose that for any k ∈ N, if k ∈ S then k + 1 ∈ S. Then

S = N.
[We want to deduce from this assumption ‘(SPMI) holds’ that (UPMI) holds.]
Let P (n) be a predicate with variable n. Suppose the statement P (0) is true. Further suppose that for any k ∈ N,
if the statement P (k) is true then the statement P (k + 1) is true. [We want to deduce, by applying (SPMI), that
for any n ∈ N, the statement P (n) is true.]
Define S = {n ∈ N : P (n) is true}. [We now proceed to prove that S = N.]

• Since the statement P (0) is true, we have 0 ∈ S.
Pick any k ∈ N. Suppose k ∈ S. Then (by the definition of S) the statement P (k) is true. Since P (k) is true,
P (k + 1) is also true. Therefore (by the definition of S) we have k + 1 ∈ S.
Now, by (SPMI), S = N.
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It follows that for any n ∈ N, the statement P (n) is true.

Argument for ‘(UPMI)=⇒(SPMI)’:

Assume (UPMI) holds:
∗ Let P (n) be a predicate with variable n. Suppose the statement P (0) is true. Further suppose that for any
k ∈ N, if the statement P (k) is true then the statement P (k+1) is true. Then the statement P (n) is true for
any n ∈ N.

[We want to deduce from this assumption ‘(UPMI) holds’ that (SPMI) holds.]
Let S be a subset of N. Suppose 0 ∈ S. Further suppose that for any k ∈ N, if k ∈ S then k + 1 ∈ S. [We want
to deduce, by applying (UPMI), that N ⊂ S.]

• For any n ∈ N, denote by P (n) the proposition n ∈ S. [We now proceed to apply mathematical induction to
prove that for any n ∈ N, P (n) is true.]
By assumption, 0 ∈ S. Then P (0) is true.
Let k ∈ N. Suppose P (k) is true. Then k ∈ S. By the assumption on S, since k ∈ S, we also have k + 1 ∈ S.
Therefore P (k + 1) is true.
By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.

We have verified that every element of N is an element of S. Then N ⊂ S.
By definition S ⊂ N. Hence S = N.

The result follows.

5. Outline of Proof of Theorem (2). Here we give the set-up and the beginning steps for each part of the argument.
Fill in the remaining steps as an exercise.
Argument for ‘(WOPI)=⇒(SPMI)’:

• Suppose the statement (WOPI) holds.
Let T be a subset of N. Suppose 0 ∈ T . Further suppose that for any n ∈ N, if k ∈ T then k + 1 ∈ T .
By definition, T ⊂ N. We verify that N ⊂ T , with the method of proof by contradiction.

[Idea. Suppose it were true that N ⊂/ T . We look for a contradiction.
By assumption, there would exist some x0 ∈ N such that x0 /∈ T .
Define S = {x ∈ N : x /∈ T}. Since x0 ∈ S, we would have S ̸= ∅.
(WOPI) would tell us that S had a least element, say, λ. By studying the number λ, we will come to a desired
contradiction.
We will be forced to conclude that N ⊂ T in the first place.]

Since T ⊂ N and N ⊂ T , we have T = N.
It follows that the statement (SPMI) holds.

Argument for ‘(SPMI)=⇒(SPMI2)’:

• Suppose that the statement (SPMI) holds.
Let U be a subset of N. Suppose that 0 ∈ U . Further suppose that for any k ∈ N, if J0, kK ⊂ U then k + 1 ∈ U .
By definition, U ⊂ N. We verify that N ⊂ U .

[Idea. Define T = {x ∈ N : J0, xK ⊂ U}.
Apply (SPMI) to deduce that T = N.
Now ask: Is it true that every element of T an element of U? If yes, then it follows that N ⊂ U , and
furthermore N = U .]

It follows that the statement (SPMI2) holds.

Argument for ‘(SPMI2)=⇒(WOPI)’:

• Suppose that the statement (SPMI2) holds.
Let S be a non-empty subset of N. We verify that S has a least element with the method of proof by contradiction:

[Idea. Suppose it were true that S did not have a least element. We look for a contradiction.
Define U = N\S.
We verify that 0 ∈ U , and that for any k ∈ N, if J0, kK ⊂ U then k + 1 ∈ U .
(SPMI2) would then imply that U = N. It would then follow that S = ∅: this is the desired contradiction.]
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It follows that the statement (WOPI) holds.

The result follows.

6. Just as there are one formulation of the Principle of Mathematical Induction with set-theoretic jargon and one without,
there are also one formulation of the Second Principle of Mathematical Induction with set-theoretic jargon and one
without.
Second Principle of Mathematical Induction. (UPMI2.)

Let Q(n) be a predicate with variable n.

Suppose the statement Q(0) is true.

Further suppose that for any k ∈ N, if the statements Q(0), Q(1), · · · , Q(k) are true then the statement Q(k + 1) is
true.
Then the statement Q(n) is true for any n ∈ N.

Theorem (3).

The statements (SPMI2), (UPMI2) are logically equivalent.

Proof of Theorem (3). Exercise.

7. The Second Principle of Mathematical Induction makes possible the method of argument, usually known as ‘strong
induction’, for statements in the form

‘For any natural number n, Q(n) is true’

in which ‘Q(x)’ is a predicate with the variable x. The general scheme is described below:

• Step (0). Identify Q(n) and write it down explicitly.

• Step (1). Prove the statement Q(0). (This is the ‘initial step argument’.)

• Step (2). Assume the statements Q(0), Q(1), Q(2), · · · , Q(k) to be true. (This is called the induction assumption.)
Prove the statement Q(k + 1) under this assumption. (This is the ‘induction argument’.)

• Step (3). Declare that according to the Second Principle of Mathematical Induction, Q(n) is true for any n ∈ N.
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