
1. Recall the notion of predicate:

A predicate with variables x, y, z, · · · is a statement ‘modulo’ the ambiguity of possibly one or
several variables x, y, z, · · · . Provided we have specified x, y, z, · · · in such a predicate, it becomes a
statement, for which it makes sense to say it is true or false.

Also recall the statement (UPMI) (together with the logically equivalent statement (VPMI)) from the
handout Argument by mathematical induction:

(First) Principle of Mathematical Induction (in its ‘usual’ formulation). (UPMI).
Let P (n) be a predicate with variable n.
Suppose the statement P (0) is true.
Further suppose that for any k ∈ N, if the statement P (k) is true then the statement P (k+1) is true.
Then the statement P (n) is true for any n ∈ N.

Principle of Mathematical Induction, (variant of its ‘usual’ formulation). (VPMI).
Let R(n) be a predicate with variable n. Let M be an integer.
Suppose the statement R(M) is true.
Further suppose that for any k ∈ JM,+∞), if the statement R(k) is true then the statement R(k+1)

is true.
Then the statement R(n) is true for any n ∈ JM,+∞).

Here we give some examples on argument by mathematical induction. As explained in the handout
Argument by mathematical induction, each of them has to follow a certain format, as dictated by the role
played by the statement (UPMI) (or the statement (VPMI)) in such an argument.
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2. Example (A).
We want to verify the statement

(⋆) 03 + 13 + 23 + · · · + n3 =
n2(n + 1)2

4
for any n ∈ N.

Observation. Note that (⋆) is of the form
‘for any n ∈ N, P (n) is true’,

in which P (n) is the predicate with variable n that reads:

‘03 + 13 + 23 + · · · + n3 =
n2(n + 1)2

4
’

So it makes sense to attempt to argue for (⋆) by mathematical induction.
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Justification of (⋆) (by mathematical induction).
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3. Example (B).
We want to verify the statement (⋆):
(⋆) n3 − n is divisible by 3 for any n ∈ N.

Observation. Note that (⋆) is of the form
‘for any n ∈ N, P (n) is true’,

in which P (n) is the predicate with variable n that reads:
‘n3 − n is divisible by 3’.

So it makes sense to attempt to argue for (⋆) by mathematical induction.
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Justification of (⋆) (by mathematical induction).
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4. Example (C).
We want to verify the statement

(⋆)
(2n)!

(n!)2
>

4n

n + 1
for any n ∈ N\{0, 1}.

Observation. Note that (⋆) is of the form
‘for any integer n no less than 2, P (n) is true’,

in which P (n) is the predicate with variable n that reads:

‘(2n)!
(n!)2

>
4n

n + 1
’.

So it makes sense to attempt to argue for (⋆) by mathematical induction.
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Justification of (⋆) (by mathematical induction).
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5. Example (D).
We want to verify the statement
(⋆) For any n ∈ J8,+∞), there exist some u, v ∈ N such that n = 3u + 5v.

Observation. Note that (⋆) is of the form
‘for any integer n no less than 8, P (n) is true’,

in which P (n) is the predicate with variable n that reads:
‘there exist some u, v ∈ N (dependent on n) such that n = 3u + 5v’.

So it makes sense to attempt to argue for (⋆) by mathematical induction.
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Justification of (⋆) (by mathematical induction).
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6. Example (E).
We want to verify the statement (⋆⋆):

(⋆⋆) Suppose α is a number, not equal to 1. Then
n∑

k=1

αk−1 =
1− αn

1− α
for each positive

integer n.

Observation. Note that (⋆⋆) is of the form
‘Suppose blah-blah-blah. Then for any positive integer n, P (n) is true’,

in which P (n) is the predicate with variable n that reads:

‘
n∑

k=1

αk−1 =
1− αn

1− α
’.

It makes sense to attempt to argue for (⋆⋆) by mathematical induction. However, the
process of the argument is conducted under the ‘overarching assumption’

‘ α is a number, not equal to 1’.
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Justification of (⋆⋆) (by mathematical induction).
Suppose α is a number, not equal to 1.
• For any positive integer n, denote by P (n) the proposition

n∑
k=1

αk−1 =
1− αn

1− α
.

• We have
1∑

k=1

αk−1 = 1 =
1− α1

1− α
. Hence P (1) is true.

• Let m ∈ N\{0}. Suppose P (m) is true. We deduce that P (m + 1) is true:
We have

m+1∑
k=1

αk−1 =

m∑
k=1

αk−1 + αm

=
1− αm

1− α
+ αm =

1− αm

1− α
+
αm − αm+1

1− α
=

1− αm+1

1− α

Hence P (k + 1) is true.

• By the Principle of Mathematical Induction, P (n) is true for any n ∈ N\{0}.
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7. Example (F).
We want to verify the statement (⋆⋆):

(⋆⋆) Let {an}∞n=1 be the infinite sequence of real numbers defined by{
a1 = 0

an+1 = 2n− an if n ≥ 1
.

Then an = n +
(−1)n − 1

2
for each positive integer n.

Observation. Note that (⋆⋆) is of the form
‘Suppose blah-blah-blah. Then for any positive integer n, P (n) is true’,

in which P (n) is the predicate with variable n that reads:

‘an = n +
(−1)n − 1

2
’.

It makes sense to attempt to argue for (⋆⋆) by mathematical induction. However, the
process of the argument is conducted under the ‘overarching assumption’

‘ {an}∞n=1 is the infinite sequence of real numbers defined by so-and-so.’
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Justification of (⋆⋆) (by mathematical induction).
Let {an}∞n=1 be the infinite sequence of real numbers defined by{

a1 = 0

an+1 = 2n− an if n ≥ 1
.

• For any positive integer n, denote by P (n) the proposition an = n +
(−1)n − 1

2
.

• Note that a1 = 0 = 1 +
(−1)1 − 1

2
. Then P (1) is true.

• Let k be a positive integer. Suppose P (k) is true. Then ak = k +
(−1)k − 1

2
.

We verify that P (k + 1) is true:
We have

ak+1 = 2k − ak = 2k −
[
k +

(−1)k − 1

2

]
= (k + 1)− 1 +

−(−1)k + 1

2
= (k + 1) +

(−1)k+1 − 1

2

Hence P (k + 1) is true.

• By the Principle of Mathematical Induction, P (n) is true for each positive integer n.
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8. Example (G).
We want to verify the statement (⋆⋆):

(⋆⋆) Let n be an integer greater than 1. Suppose u1, u2, · · · , un are real numbers.
Then |u1 + u2 + · · · + un| ≤ |u1| + |u2| + · · · + |un|.

Remark.
Refer to the handout Absolute Value and Triangle Inequality for the Reals. This state-
ment is the ‘inequality part’ in the Generalization of Triangle Inequality on the real
line.

Observation. Note that (⋆⋆) is of the form
‘for any integer n greater than 1, P (n) is true’,

in which P (n) is the predicate with variable n that reads:
‘Suppose u1, u2, · · · , un are real numbers.
Then |u1 + u2 + · · · + un| ≤ |u1| + |u2| + · · · + |un|.’.

It makes sense to attempt to argue for (⋆⋆) by mathematical induction.
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Justification of (⋆⋆) (by mathematical induction).
• For any integer n greater than 1, denote by P (n) the proposition below:

‘Suppose u1, u2, · · · , un are real numbers.
Then |u1 + u2 + · · · + un| ≤ |u1| + |u2| + · · · + |un|.’

• P (2) is an immediate consequence of the Triangle Inequality on the real line.

• Let k ∈ N\{0, 1}. Suppose P (k) holds.
We verify P (k + 1):

Suppose u1, u2, · · · , uk, uk+1 are real numbers.
Define v1 = u1, v2 = u2, ..., vk−1 = uk−1, and define vk = uk + uk+1.
By P (k) and P (2) in succession, we have
|u1 + u2 + · · · + uk−1 + uk + uk+1| = |v1 + v2 + · · · + vk−1 + vk|

≤ |v1| + |v2| + · · · + |vk−1| + |vk|
= |u1| + |u2| + · · · + |uk−1| + |uk + uk+1|
≤ |u1| + |u2| + · · · + |uk−1| + |uk| + |uk+1|

Hence P (k + 1) is true.

• By the Principle of Mathematical Induction, P (n) is true for any integer n greater
than 1.
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9. Example (H).
We take for granted the validity of the statement known as Euclid’s Lemma:

Let h, k ∈ Z, and p be a prime number. Suppose hk is divisible by p. Then at least
one of h, k is divisible by p.

We want to verify the statement (⋆⋆):
(⋆⋆) Suppose p is a prime number. Then, for any integer n greater than 1, for any integers

a1, a2, · · · , an, if a1a2 · ... · an is divisible by p, then at least one of a1, a2, · · · , an is
divisible by p.

Remark. We may think of the statement (⋆⋆) as a generalization of Euclid’s Lemma
to the product-of-many-integers situation.

Note that (⋆⋆) is of the form
‘Suppose blah-blah-blah. Then for any integer n greater than 1, P (n) is true’,

in which P (n) is the predicate with variable n that reads:
‘for any integers a1, a2, · · · , an, if a1a2 · ... · an is divisible by p, then at least one of
a1, a2, · · · , an is divisible by p’.

It makes sense to attempt to argue for (⋆⋆) by mathematical induction. However , the
process of the argument is conducted under the ‘overarching assumption’

‘ p is a prime number.’
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Justification of (⋆⋆) (by mathematical induction).
• Let p be a prime number. For any n ∈ N\{0, 1}, denote by P (n) the following

proposition:
Let a1, a2, · · · , an ∈ Z. Suppose a1a2 · ... · an is divisible by p. Then at least one
of a1, a2, · · · , an is divisible by p.

• P (2) is an immediate consequence of Euclid’s Lemma.

• Let k ∈ N\{0, 1}. Suppose P (k) is true.
We prove that P (k + 1) is true:

Let a1, a2, · · · , ak, ak+1 ∈ Z. Suppose a1a2 · ... · akak+1 is divisible by p.
Note that a1a2 · ... · ak ∈ Z and (a1a2 · ... · ak)ak+1 = a1a2 · ... · akak+1.
Then by Euclid’s Lemma, at least one of a1a2 · ... · ak, ak+1 is divisible by p.
∗ (Case 1). Suppose ak+1 is divisible by p. Then at least one of a1, a2, · · · , ak, ak+1,

namely ak+1, is divisible by p.
∗ (Case 2). Suppose a1a2 · ... · ak is divisible by p. Then, by P (k), at least one

of a1, a2, ..., ak is divisible by p. Therefore at least one of a1, a2, · · · , ak, ak+1 is
divisible by p.

Hence P (k + 1) is true.

• By the Principle of Mathematical Induction, P (n) is true for any n ∈ N\{0, 1}.
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