
1. Definition.
Let m,n ∈ Z. Let c ∈ Z. We say c is a common divisor of m,n if both of m,n

are divisible by c.
2. Definition.

Let m,n ∈ Z.

(1) Suppose m,n are not both zero. Let g ∈ N. We say g is a greatest common
divisor of m,n if both of the following conditions are satisfied:

(1a) g is a common divisor of m,n.
(1b) For any d ∈ Z, if d is a common divisor of m,n then |d| ≤ g.

(2) (Suppose m = n = 0.) We define the greatest common divisor of 0, 0 to be 0.

Remark. Two questions arise naturally:
Existence question. Does each pair of integers have at least one greatest
common divisor?
Uniqueness question. Does each pair of integers have at most one greatest
common divisor?
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5. Lemma (3).
Let a, b ∈ Z. The statements below hold:

(1) gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).
(2) gcd(a, b) = gcd(b, a).
(3) gcd(a, a) = a.
(4) gcd(a, 1) = 1.
(5) gcd(a, 0) = a.

Proof of Lemma (3). Exercise.

Remark. Lemma (2), Lemma (3) combine to tell us that we need only concern
ourselves with the existence question of greatest common divisor for a pair of distinct
positive integers both of which are not prime numbers. (Why?)
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6. Theorem (EAN). (Euclidean Algorithm for positive integers.)
Let a0, a1 ∈ N\{0}. Suppose a0 > a1.
For each j ∈ N\{0, 1},

if aj−1 ̸= 0, then define aj ∈ N to be the remainder obtained after dividing aj−2

by aj−1;
if aj−1 = 0, then define aj = 0.

Then, there exists some N ∈ N\{0} such that the following statements hold:
(1) a0 > a1 > a2 > ... > aN > 0 and aj = 0 whenever j > N .
(2) There exist some s, t ∈ Z such that aN = sa0 + ta1.
(3) aN is a common divisor of a0, a1.
(4) For any d ∈ Z, if d is a common divisor of a0, a1 then |d| ≤ aN .
(5) gcd(a0, a1) = aN .

Proof of Theorem (EAN). Postponed.
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7. Euclidean Algorithm.
1. We determine gcd(10000000011, 10101):

10000000011 = 990000 × 10101 + 10011

10101 = 1 × 10011 + 90

10011 = 111 × 90 + 21

90 = 4 × 21 + 6

21 = 3 × 6 + 3

6 = 2 × 3 + 0

By Theorem (EAN), we have gcd(10000000011, 10101) = 3. From the definition, we also have

gcd(−10000000011, 10101) = gcd(10000000011,−10101) = gcd(−10000000011,−10101) = 3.

2. We determine gcd(960, 825):
960 = 1 × 825 + 135

825 = 6 × 135 + 15

135 = 9 × 15 + 0

By Theorem (EAN), we have gcd(960, 825) = 15. From the definition, we also have

gcd(−960, 825) = gcd(960,−825) = gcd(−960,−825) = 1.
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3. We determine gcd(2468008642, 1357997531):

2468008642 = 1 × 1357997531 + 1110011111

1357997531 = 1 × 1110011111 + 247986420

1110011111 = 4 × 247986420 + 118065431

247986420 = 2 × 118065431 + 11855558

118065431 = 9 × 11855558 + 11365409

11855558 = 1 × 11365409 + 490149

11365409 = 23 × 490149 + 91982

490149 = 5 × 91982 + 30239

91982 = 3 × 30239 + 1265

30239 = 23 × 1265 + 1144

1265 = 1 × 1144 + 121

1144 = 9 × 121 + 55

121 = 2 × 55 + 11

55 = 5 × 11 + 0

By Theorem (EAN), we have gcd(2468008642, 1357997531) = 11. From the definition, we also
have

gcd(−2468008642, 1357997531) = gcd(2468008642,−1357997531)

= gcd(−2468008642,−1357997531) = 11.

7













(1) From the argument above, a0, a1, a2, · · · , aN is a strictly decreasing finite sequence
of positive integers.
By definition of N , ak = 0 whenever k > N .

(2) By definition, there exist some q1, q2, · · · qN ∈ N such that

a0 = q1 × a1 + a2,

a1 = q2 × a2 + a3,
...

aN−3 = qN−2 × aN−2 + aN−1,

aN−2 = qN−1 × aN−1 + aN ,

aN−1 = qN × aN + 0.

We have aN = 1 · aN−2 − qN−1aN−1. Here 1,−qN−1 ∈ Z. Then

aN = aN−2 − qN−1(aN−3 − qN−2aN−2) = −qN−1aN−3 + (1 + qN−1qN−2)aN−2.

Here −qN−1, 1 + qN−1qN−2 ∈ Z.
Repeating this argument finitely many times, we deduce that there exist some
s, t ∈ Z such that aN = sa0 + ta1.
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(3) aN−1 is divisible by aN .
Since aN−2 = qN−1aN−1 + aN , aN−2 is divisible by aN . (Why?)
Since aN−3 = qN−2aN−2 + aN−1, aN−3 is divisible by aN . (Why?)
Repeating this argument for finitely many times, we deduce that a0, a1 are both
divisible by aN .

(4) Pick any d ∈ Z. Suppose d is a common divisor of a0, a1.
Then there exist some s′, t′ ∈ Z such that a0 = s′d and a1 = t′d.
Now aN = sa0 + ta1 = (ss′ + tt′)d.
Note that ss′ + tt′ ∈ Z. Since aN > 0, we have ss′ + tt′ ̸= 0.
Then aN = |aN | = |ss′ + tt′||d| ≥ |d|.

(5) The result follows from (3) and (4) combined.
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11. Theorem (6). (Alternative definition of greatest common divisor.)
Let m,n ∈ Z. Let g ∈ N.
The statements (†), (‡) are logically equivalent:
(†) g = gcd(m,n).
(‡) g is a common divisor of m,n and g is divisible by every common divisor of m,n.
Proof of Theorem (6). Exercise. (Apply Lemma (5).)
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Euclid’s Lemma.
Let a, b ∈ Z and p be a prime number. Suppose ab is divisible by p. Then at least
one of a, b is divisible by p.

Corollary to Euclid’s Lemma. (Generalization of Euclid’s Lemma.)
Let p be a prime number.
Let n ∈ N\{0, 1}. Let a1, a2, · · · , an ∈ Z.
Suppose a1a2 · ... · an is divisible by p.
Then at least one of a1, a2, · · · , an is divisible by p.

13. Theorem (7). (A characterization of prime numbers.)
Let p ∈ Z\{−1, 0, 1}. The statements (†), (‡) are logically equivalent:
(†) p is a prime number.
(‡) For any a, b ∈ Z, if ab is divisible by p then at least one of a, b is divisible by p.
Proof of Theorem (7). Exercise.
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15. Appendix.
As an exercise, check the formal definitions for

‘common multiple’,
‘lowest common multiple’, and
‘relatively prime’

are, and their basic properties.
Something resembling all the above will appear in polynomials over fields.
You will see why it is the case in your abstract algebra course.
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