What is the greatest common divisor of 10000000011 and 10101? Apply Euclidean Algorithm on the pair of numbers 10000000011, 10101:

10000000011	= 990000	\times	10101	+	10011
10101	= 1	×	10011	+	90
10011	= 111	×	90	+	21
90	= 4	×	21	+	6
21	= 3	×	6	+	3
6	= 2	×	3	+	0

10000000011	=	990000	×	10101	+	10011
a_0		q_1		a_1		a_2
10101	=	1	×	10011	+	90
a_1		q_2		a_2		a_3
10011	=	111	×	90	+	21
a_2		q_3		a_3		a_4
90	=	4	×	21	+	6
a_3		q_4		a_4		a_5
21	=	3	×	6	+	3
a_4		q_5		a_5		a_6
6	=	2	×	3	+	0
a_5		q_6		a_6		a_7

$$a_0 = q_1 \times a_1 + a_2$$
 $a_1 = q_2 \times a_2 + a_3$
 $a_2 = q_3 \times a_3 + a_4$
 $a_3 = q_4 \times a_4 + a_5$
 $a_4 = q_5 \times a_5 + a_6$
 $a_5 = q_6 \times a_6$

For each $j \geq 7$, we have $a_j = 0$.

Claim: a_6 is the greatest common divisor of a_0, a_1 .

$$a_0 = q_1 \times a_1 + a_2$$
 $a_1 = q_2 \times a_2 + a_3$
 $a_2 = q_3 \times a_3 + a_4$
 $a_3 = q_4 \times a_4 + a_5$
 $a_4 = q_5 \times a_5 + a_6$
 $a_5 = q_6 \times a_6$

For each $j \geq 7$, we have $a_j = 0$.

Ask: Why is a_6 is a common divisor of a_0, a_1 ? Answer.

$$a_5 = q_6 \times a_6$$
. Then a_5 is divisible by a_6 .

 $a_4 = q_5 \times a_5 + a_6$. Then a_4 is divisible by a_6 .

 $a_3 = q_4 \times a_4 + a_5$. Then a_3 is divisible by a_6 .

 $a_2 = q_3 \times a_3 + a_4$. Then a_2 is divisible by a_6 .

 $a_1 = q_2 \times a_2 + a_3$. Then a_1 is divisible by a_6 .

 $a_0 = q_1 \times a_1 + a_2$. Then a_0 is divisible by a_6 .

$$a_0 = q_1 \times a_1 + a_2$$
 $a_1 = q_2 \times a_2 + a_3$
 $a_2 = q_3 \times a_3 + a_4$
 $a_3 = q_4 \times a_4 + a_5$
 $a_4 = q_5 \times a_5 + a_6$
 $a_5 = q_6 \times a_6$

For each $j \geq 7$, we have $a_j = 0$. We have verified that a_6 is a common divisor of a_0, a_1 .

Ask: Why is a_6 the greatest common divisor of a_0, a_1 ?

Answer. Preparatory claim: There exist some $s, t \in \mathbb{Z}$ such that $a_6 = sa_0 + ta_1$. Justification:

```
a_6 = a_4 - q_5 \times a_5. = u_4a_4 + v_4a_5. Here u_4 = 1, v_4 = -q_5. a_5 = a_3 - q_4 \times a_4. Subst. a_5 into above. Then a_6 = u_3a_3 + v_3a_4 for some u_3, v_3 \in \mathbb{Z}. a_4 = a_2 - q_3 \times a_3. Subst. a_4 into above. Then a_6 = u_2a_2 + v_2a_3 for some u_2, v_2 \in \mathbb{Z}. a_3 = a_1 - q_2 \times a_2. Subst. a_3 into above. Then a_6 = u_1a_1 + v_1a_2 for some u_1, v_1 \in \mathbb{Z}. a_2 = a_0 - q_1 \times a_1. Subst. a_2 into above. Then a_6 = sa_0 + ta_1 for some s, t \in \mathbb{Z}.
```

What is the greatest common divisor of 10000000011 and 10101?

Apply Euclidean Algorithm on the pair of numbers $a_0 = 10000000011$, $a_1 = 10101$, to obtain $a_2, a_3, a_4, a_5, a_6, a_7, \cdots$:

$$a_0 = q_1 \times a_1 + a_2$$
 $a_1 = q_2 \times a_2 + a_3$
 $a_2 = q_3 \times a_3 + a_4$
 $a_3 = q_4 \times a_4 + a_5$
 $a_4 = q_5 \times a_5 + a_6$
 $a_5 = q_6 \times a_6$

For each $j \geq 7$, we have $a_j = 0$. We have verified that a_6 is a common divisor of a_0, a_1 . Known also: There exist some $s, t \in \mathbb{Z}$ such that $a_6 = sa_0 + ta_1$.

Ask: Why is a_6 the greatest common divisor of a_0, a_1 ?

Answer. [Verify that for any $d \in \mathbb{Z}$, if d is a common divisor of a_0, a_1 then $|d| \leq a_6$.]

Pick any $d \in \mathbb{Z}$. Suppose d is a common divisor of a_0, a_1 .

Then there exist some $s', t' \in \mathbb{Z}$ such that $a_0 = s'd$ and $a_1 = t'd$.

Now $a_6 = sa_0 + ta_1 = (ss' + tt')d$.

Note that $ss' + tt' \in \mathbb{Z}$. Since $a_6 > 0$, we have $ss' + tt' \neq 0$.

Then $a_6 = |a_6| = |ss' + tt'| |d| \ge |d|$.