What is the greatest common divisor of 10000000011 and 10101? Apply Euclidean Algorithm on the pair of numbers 10000000011, 10101: | 10000000011 | = 990000 | \times | 10101 | + | 10011 | |-------------|----------|----------|-------|---|-------| | 10101 | = 1 | × | 10011 | + | 90 | | 10011 | = 111 | × | 90 | + | 21 | | 90 | = 4 | × | 21 | + | 6 | | 21 | = 3 | × | 6 | + | 3 | | 6 | = 2 | × | 3 | + | 0 | | 10000000011 | = | 990000 | × | 10101 | + | 10011 | |-------------|---|--------|---|-------|---|-------| | a_0 | | q_1 | | a_1 | | a_2 | | 10101 | = | 1 | × | 10011 | + | 90 | | a_1 | | q_2 | | a_2 | | a_3 | | 10011 | = | 111 | × | 90 | + | 21 | | a_2 | | q_3 | | a_3 | | a_4 | | 90 | = | 4 | × | 21 | + | 6 | | a_3 | | q_4 | | a_4 | | a_5 | | 21 | = | 3 | × | 6 | + | 3 | | a_4 | | q_5 | | a_5 | | a_6 | | 6 | = | 2 | × | 3 | + | 0 | | a_5 | | q_6 | | a_6 | | a_7 | $$a_0 = q_1 \times a_1 + a_2$$ $a_1 = q_2 \times a_2 + a_3$ $a_2 = q_3 \times a_3 + a_4$ $a_3 = q_4 \times a_4 + a_5$ $a_4 = q_5 \times a_5 + a_6$ $a_5 = q_6 \times a_6$ For each $j \geq 7$, we have $a_j = 0$. Claim: a_6 is the greatest common divisor of a_0, a_1 . $$a_0 = q_1 \times a_1 + a_2$$ $a_1 = q_2 \times a_2 + a_3$ $a_2 = q_3 \times a_3 + a_4$ $a_3 = q_4 \times a_4 + a_5$ $a_4 = q_5 \times a_5 + a_6$ $a_5 = q_6 \times a_6$ For each $j \geq 7$, we have $a_j = 0$. Ask: Why is a_6 is a common divisor of a_0, a_1 ? Answer. $$a_5 = q_6 \times a_6$$. Then a_5 is divisible by a_6 . $a_4 = q_5 \times a_5 + a_6$. Then a_4 is divisible by a_6 . $a_3 = q_4 \times a_4 + a_5$. Then a_3 is divisible by a_6 . $a_2 = q_3 \times a_3 + a_4$. Then a_2 is divisible by a_6 . $a_1 = q_2 \times a_2 + a_3$. Then a_1 is divisible by a_6 . $a_0 = q_1 \times a_1 + a_2$. Then a_0 is divisible by a_6 . $$a_0 = q_1 \times a_1 + a_2$$ $a_1 = q_2 \times a_2 + a_3$ $a_2 = q_3 \times a_3 + a_4$ $a_3 = q_4 \times a_4 + a_5$ $a_4 = q_5 \times a_5 + a_6$ $a_5 = q_6 \times a_6$ For each $j \geq 7$, we have $a_j = 0$. We have verified that a_6 is a common divisor of a_0, a_1 . Ask: Why is a_6 the greatest common divisor of a_0, a_1 ? Answer. Preparatory claim: There exist some $s, t \in \mathbb{Z}$ such that $a_6 = sa_0 + ta_1$. Justification: ``` a_6 = a_4 - q_5 \times a_5. = u_4a_4 + v_4a_5. Here u_4 = 1, v_4 = -q_5. a_5 = a_3 - q_4 \times a_4. Subst. a_5 into above. Then a_6 = u_3a_3 + v_3a_4 for some u_3, v_3 \in \mathbb{Z}. a_4 = a_2 - q_3 \times a_3. Subst. a_4 into above. Then a_6 = u_2a_2 + v_2a_3 for some u_2, v_2 \in \mathbb{Z}. a_3 = a_1 - q_2 \times a_2. Subst. a_3 into above. Then a_6 = u_1a_1 + v_1a_2 for some u_1, v_1 \in \mathbb{Z}. a_2 = a_0 - q_1 \times a_1. Subst. a_2 into above. Then a_6 = sa_0 + ta_1 for some s, t \in \mathbb{Z}. ``` What is the greatest common divisor of 10000000011 and 10101? Apply Euclidean Algorithm on the pair of numbers $a_0 = 10000000011$, $a_1 = 10101$, to obtain $a_2, a_3, a_4, a_5, a_6, a_7, \cdots$: $$a_0 = q_1 \times a_1 + a_2$$ $a_1 = q_2 \times a_2 + a_3$ $a_2 = q_3 \times a_3 + a_4$ $a_3 = q_4 \times a_4 + a_5$ $a_4 = q_5 \times a_5 + a_6$ $a_5 = q_6 \times a_6$ For each $j \geq 7$, we have $a_j = 0$. We have verified that a_6 is a common divisor of a_0, a_1 . Known also: There exist some $s, t \in \mathbb{Z}$ such that $a_6 = sa_0 + ta_1$. Ask: Why is a_6 the greatest common divisor of a_0, a_1 ? Answer. [Verify that for any $d \in \mathbb{Z}$, if d is a common divisor of a_0, a_1 then $|d| \leq a_6$.] Pick any $d \in \mathbb{Z}$. Suppose d is a common divisor of a_0, a_1 . Then there exist some $s', t' \in \mathbb{Z}$ such that $a_0 = s'd$ and $a_1 = t'd$. Now $a_6 = sa_0 + ta_1 = (ss' + tt')d$. Note that $ss' + tt' \in \mathbb{Z}$. Since $a_6 > 0$, we have $ss' + tt' \neq 0$. Then $a_6 = |a_6| = |ss' + tt'| |d| \ge |d|$.