
1. Definition. (Least element of a set of real numbers.)
Let S be a subset of R. Let λ ∈ S.
We say λ is a least element of S if

(for any x ∈ S, λ ≤ x).

Remark.
In plain words, λ is a least element of S exactly when λ is smaller than every other
element of S.

Well-Ordering Principle for integers. (WOPI).
Let S be a subset of N. Suppose S ̸= ∅. Then S has a least element.

Remark.
A more formal way to express ‘S has a least element’ is:

there exists some λ ∈ S such that λ is a least element of S.

Further remark.
The Well-ordering Principle for integers is usually regarded as an axiom in mathematics
that we can choose to believe its validity, or not believe.
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2. Theorem (DAN). (Division Algorithm for natural numbers.)
Let m,n ∈ N. Suppose n ̸= 0.
Then there exist some unique q, r ∈ N such that m = qn + r and 0 ≤ r < n.

Remark on terminology.
In the statement of Theorem (DAN), the numbers q, r are called the quotient and
remainder in the division of m by n.

Digression on logic: Existence-and-uniqueness statement.
The ‘conclusion part’ of Theorem (DAN) is of the form

‘There exist some unique blah-blah-blah such that bleh-bleh-bleh’.
For this reason, Theorem (DAN) is called an existence-and-uniqueness statement.
As a whole Theorem (DAN) is made up of two parts: the ‘existence part’ (Lemma (E))
and the ‘uniqueness part’ (Lemma (U)). It is the conjunction of Lemma (E) and Lemma
(U).

Proof of Theorem (DAN).
The result follows from Lemma (E) and Lemma (U). The argument for Lemma (E) relies
on the Well-Ordering Principle for integers.
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3. Lemma (E). (Existence part of Theorem (DAN).)
Let m,n ∈ N. Suppose n ̸= 0.
Then there exist some q, r ∈ N such that m = qn + r and 0 ≤ r < n.

Lemma (U). (Uniqueness part of Theorem (DAN).)
Let m,n ∈ N. Suppose n ̸= 0.
Let q, r, q′, r′ ∈ N.
Suppose m = qn + r and 0 ≤ r < n and m = q′n + r′ and 0 ≤ r′ < n.
Then q = q′ and r = r′.

Remark.
Another way of stating Lemma (U) is:—

Let m,n ∈ N. Suppose n ̸= 0.
Then there is at most one q ∈ N and at most one r ∈ N such that m = qn + r and
0 ≤ r < n.

While this formulation of Lemma (U) make it easier heuristically to understand its con-
tent, it is the original formulation which makes it clear what should be done when we try
to prove Lemma (U).
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4. Proof of Lemma (E).
Let m,n ∈ N. Suppose n ̸= 0.

[Idea for the argument.
Remember that we want to name appropriate natural numbers q, r satisfying both
m = qn + r and 0 ≤ r < n.
We put these two conditions in the form 0 ≤ m− qn = r < n.
This suggests we look for a candidate for r from the list of natural numbers

m− 0 · n,m− 1 · n,m− 2n,m− 3n, · · ·

This is a descending arithmetic progression. Does it terminate or not?
It has to terminate; otherwise, it would ‘descend into the negative integers’.
A candidate for r is ‘located’ where this list terminates. (Why?)
With this candidate for r we also obtain a candidate for q. Now we are ready to
proceed with the formal argument.]
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Proof of Lemma (E).
Let m,n ∈ N. Suppose n ̸= 0.

(Ea) Define S = {x ∈ N : There exists some k ∈ N such that x = m− kn}.

(Eb)

(Ec)
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5. Proof of Lemma (U).
Let m,n ∈ N. Suppose n ̸= 0.
Suppose q, r, q′, r′ ∈ N.
Suppose m = qn + r and 0 ≤ r < n and m = q′n + r′ and 0 ≤ r′ < n.
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6. Corollary (DAZ1). (Division Algorithm for integers.)
Let m,n ∈ Z. Suppose n > 0.
Then there exist some unique q, r ∈ Z such that m = qn + r and 0 ≤ r < n.
Proof of Corollary (DAZ1).

(a) [‘Existence argument’.] Let m,n ∈ Z. Suppose n > 0. Note that m ≥ 0 or m < 0.
• (Case 1). Suppose m ≥ 0. Then, by Theorem (DAN), there exists some q, r ∈ N

such that m = qn + r and 0 ≤ r < n.
• (Case 2). Suppose m < 0. [Idea. Is there an integer in the list

m + 0 · n,m + 1 · n,m + 2n,m + 3n, · · ·

which is non-negative? If yes, can we apply Theorem (DAN) to such an integer?]

(b) [‘Uniqueness argument’.] Exercise.
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Corollary (DAZ1). (Division Algorithm for integers.)
Let m,n ∈ Z. Suppose n > 0.
Then there exist some unique q, r ∈ Z such that m = qn + r and 0 ≤ r < n.

Corollary (DAZ2). (Division Algorithm for integers.)
Let m,n ∈ Z. Suppose n ̸= 0.
Then there exist some unique q, r ∈ Z such that m = qn + r and 0 ≤ r < |n|.

Proof of Corollary (DAZ2). Exercise.

Remark on terminology.
In each of Corollary (DAZ1) and Corollary (DAZ2), the numbers q, r are called the
quotient and remainder in the division of m by n.
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7. Theorem (DIV).
Let m,n ∈ Z. Suppose n ̸= 0. m is divisible by n iff the remainder is 0 in the division
of m by n.
Proof of Theorem (DIV). Exercise.
Remark. This result provides the connection between the definition of divisibility
and Division Algorithm.

8. Definition.
Suppose n ∈ Z. Then:

(a) n is said to be even if n is divisible by 2.
(b) n is said to be odd if n is not divisible by 2.

Theorem (O). (Equivalent formulation of the definition of odd-ness for
integers.)
Let n ∈ Z. The statements (†), (‡) are logically equivalent:
(†) n is odd.
(‡) There exists some k ∈ Z such that n = 2k + 1.
Proof of Theorem (O). Exercise.

9




