1. (a) Let I = [0, 9). (By definition, $I = \{x \in \mathbb{R} : 0 \le x < 9\}$.)

- i. Prove that I has a least element, namely, 0.
- ii. Prove that I has no greatest element.
- (b) Let $J = [0,9) \cap \mathbb{Q}$.
 - i. Prove that J has a least element, namely, 0.

ii. Prove that J has no greatest element.

- (c) Let $K = [0,9) \setminus \mathbb{Q}$.
 - i. Prove that K has no greatest element.
 - ii. Prove that K has no least element.

2. Let
$$S = \left\{ x \mid x = \frac{n+2}{n+1} \text{ for some } n \in \mathbb{N} \right\}.$$

- (a) Prove that S has a greatest element.
- (b) Prove that S does not have any least element.
- (c) Prove that S is bounded below in \mathbb{R} .

3. Let
$$S = \left\{ x \in \mathbb{R} : x = \frac{1}{3^m} + \frac{1}{5^n} \text{ for some } m, n \in \mathbb{N} \right\}.$$

- (a) Does S have any greatest element? Why?
- (b) Does S have any least element? Why?
- (c) Is S bounded below in \mathbb{R} ? Why?

4. Let
$$S = \left\{ x \in \left(0, \frac{1}{8}\right) : x = \frac{b}{3^a} \text{ for some } a, b \in \mathbb{N} \right\}$$
, and $T = \left\{ y \in \mathbb{R} : y = \sum_{k=1}^n \frac{1}{9^k} \text{ for some } n \in \mathbb{N} \setminus \{0\} \right\}$

- (a) Verify that $T \subset S$.
- (b) Does T have a least element? Justify your answer.
- (c) Prove that $S \not\subset T$.

Remark. The result you obtain in part (b) may be useful.

- (d) Prove the statement (\sharp) :
 - (\sharp) For any $u, v \in S$, if u < v then there exists some $w \in S$ such that u < w < v.
- 5. Take for granted the validity of the statement below, known as Archimedean Principle:

For any $\varepsilon \in \mathbb{R}$, if $\varepsilon > 0$ then there exists some $N \setminus \{0\}$ such that $N \varepsilon > 1$.

Also take for granted the validity of the result (\sharp) :

(\sharp) For any $t \in (0, +\infty)$, $0 < \sin(t) < t$.

Let

$$S = \left\{ x \mid x = \sin\left(\frac{1}{n}\right) \text{ for some } n \in \mathbb{N} \setminus \{0\} \right\}, \qquad T = \left\{ x \mid x = \cos\left(\frac{1}{n}\right) \text{ for some } n \in \mathbb{N} \setminus \{0\} \right\}.$$

- (a) i. Verify that a lower bound of S in R is 0.
 ii. Define L = {λ | λ is a lower bound of S in R.}. Prove that 0 is the greatest element of L.
- (b) i. Verify that 1 is an upper bound of T in R.
 ii. Define M = {μ | μ is a upper bound of T in R.}. Prove that 1 is a least element of T.

6. Let
$$S = \left\{ x \in \mathbb{R} : x > 0 \text{ and there exist some } m, n \in \mathbb{N} \setminus \{0\} \text{ such that } x = \frac{1}{m} - \frac{1}{n} \right\}$$

- (a) Prove that S does not have any greatest element.
- (b) Define $U = \{ \mu \in \mathbb{R} : \mu \text{ is an upper bound of } S \text{ in } \mathbb{R} \}.$
 - i. Prove that $U \neq \emptyset$.
 - ii. Prove that U has a least element.

Remark. Take for granted the validity of the Archimedean Principle.

- 7. Let S be a subset of \mathbb{R} and $\sigma \in \mathbb{R}$. Suppose σ is an upper bound of S in \mathbb{R} . Prove that the two statements below are logically equivalent:
 - (†) For any $\beta \in \mathbb{R}$, if β is an upper bound of S in \mathbb{R} then $\sigma \leq \beta$.
 - (‡) For any positive real number ε , there exists some $x \in S$ such that $\sigma \varepsilon < x$.

Remark. We introduce/recall the definition for the notion of **least upper bound of a set** here:

Let S be a subset of \mathbb{R} and $\sigma \in \mathbb{R}$. We say σ is a least upper bound of S in \mathbb{R} if both of the statements (LU1), (LU2) are true:

- (LU1) σ is an upper bound of S in \mathbb{R} .
- (LU2) For any $\beta \in \mathbb{R}$, if β is an upper bound of S in \mathbb{R} then $\sigma \leq \beta$.

We also introduce/recall the **Least-upper-bound Axiom** for the real number system:

Let S be a subset of \mathbb{R} . Suppose S is non-empty and is bounded above in \mathbb{R} . Then S has a least upper bound.

What we have established in this question is an equivalent formulation for the definition for 'least upper bound of a set': we may replace (LU2) by:

(LU2') For any positive real number ε , there exists some $x \in S$ such that $\sigma - \varepsilon < x$.

8. (a) Let $\alpha \in \mathbb{R}$, and $A = \{x \mid x < \alpha\}$. Verify the statements below:

- i. For any $x \in A$, $y \in \mathbb{R}$, if y < x then $y \in A$.
- ii. $A \neq \emptyset$.
- iii. $A \neq \mathbb{R}$.
- iv. For any $x \in A$, there exists $x' \in A$ such that x < x'.

(b) Let A be a subset of \mathbb{R} . Suppose Conditions (C1), (C2), (C3), (C4) are all satisfied:

- (C1) For any $x \in A$, $y \in \mathbb{R}$, if y < x then $y \in A$.
- (C2) $A \neq \emptyset$.
- (C3) $A \neq \mathbb{R}$.
- (C4) For any $x \in A$, there exists $x' \in A$ such that x < x'.

Prove that there exists some $\alpha \in \mathbb{R}$ such that $A = \{x \mid x < \alpha\}$. (You will need the Least-upper-bound Axiom at some stage in your argument.)

Remark. What we have just proved is a characterization of half-open intervals.

Answer.

- 2. (a) 2 is the greatest element of S.
 - (b) S has no least element.
 - (c) S is bounded below by 0 in $\mathbb{R}.$
- 3. (a) 2 is the greatest element of S.
 - (b) S has no least element.
 - (c) S is bounded below by 0 in $\mathbb{R}.$
- 4. (a)
 - (b) $\frac{1}{9}$ is the least element of T.
 - (c) —
 - (d) ——