Advice.

- All questions apart from Question (1) and Question (2) are advanced. They are intended as preview material on MATH2050.
- 1. We introduce the definitions below:
 - Let $a, b \in \mathbb{R}$.

We define the **maximum** of a, b, which we denote by $\max(a, b)$, by

$$\max(a,b) = \begin{cases} b & \text{if } a \le b \\ a & \text{if } a > b \end{cases}$$

We define the **minimum** of a, b, which we denote by $\min(a, b)$, by

$$\min(a,b) = \begin{cases} a & \text{if } a \le b \\ b & \text{if } a > b \end{cases}$$

Prove the statements below:

- (a) Suppose $a, b \in \mathbb{R}$. Then $\min(a, b) \le a \le \max(a, b)$ and $\min(a, b) \le b \le \max(a, b)$.
- (b) Suppose $a, b \in \mathbb{R}$. Then $\max(a, b) = \frac{a+b+|a-b|}{2}$ and $\min(a, b) = \frac{a+b-|a-b|}{2}$.
- (c) Suppose $a, b \in \mathbb{R}$. Then $a + b = \max(a, b) + \min(b, a)$ and $|a b| = \max(a, b) \min(a, b)$.
- (d) Suppose $a, b \in \mathbb{R}$. Then $\max(a, b) = \max(b, a)$ and $\min(a, b) = \min(b, a)$.
- (e) Suppose $a, b \in \mathbb{R}$. Then $\max(-a, -b) = -\min(a, b)$ and $\min(-a, -b) = -\max(a, b)$.
- (f) Suppose $a, b, c \in \mathbb{R}$. Then $\max(\max(a, b), c) = \max(a, \max(b, c))$ and $\min(\min(a, b), c) = \min(a, \min(b, c))$.
- (g) Suppose $a, b, c \in \mathbb{R}$. Then $\min(\max(a, b), \max(b, c), \max(a, c)) = \max(\min(a, b), \min(b, c), \min(c, a))$.
- 2. (a) Prove the statements below:
 - i. Suppose $a \in \mathbb{R}$. Then |a| = |-a|.
 - ii. Suppose $b, c \in \mathbb{R}$. Then $-b \leq c \leq b$ iff $|c| \leq b$.
 - (b) Apply the results above to prove the statement below:
 - Suppose $x, y \in \mathbb{R}$. Then $|x+y| \le |x|+|y|$.
- 3. Let ε be a positive real number. Let x, y, x_0, y_0 be real numbers. Prove the statements below:

(a) Suppose
$$|x - x_0| < \frac{\varepsilon}{2}$$
 and $|y - y_0| < \frac{\varepsilon}{2}$. Then $|(x + y) - (x_0 + y_0)| < \varepsilon$ and $|(x - y) + (x_0 - y_0)| < \varepsilon$.

(b) Suppose $|x - x_0| < \min(\frac{\varepsilon}{2|y_0| + 1}, 1)$ and $|y - y_0| < \frac{\varepsilon}{2|x_0| + 1}$. Then $|xy - x_0y_0| < \varepsilon$.

(c) Suppose
$$y_0 \neq 0$$
 and $|y - y_0| < \min(\frac{|y_0|}{2}, \frac{\varepsilon |y_0|^2}{2})$. Then $y \neq 0$ and $\left|\frac{1}{y} - \frac{1}{y_0}\right| < \varepsilon$.

4. Let c, ε be positive real numbers. Define $\delta = \min(1, \frac{\varepsilon}{1+3c+3c^2})$.

- (a) Prove that $\delta > 0$ and $\delta \leq 1$.
- (b) Let x be a real number. Suppose $|x c| < \delta$.
 - i. Prove that $|x^2 + cx + c^2| \le 1 + 3c + 3c^2$.
 - ii. Hence, or otherwise, deduce that $|x^3 c^3| < \varepsilon$.

Remark. This is what we have verified overall: For any c > 0, for any $\varepsilon > 0$, there exists some $\delta > 0$, (namely, $\delta = \min(1, \frac{\varepsilon}{1+3c+3c^2})$) such that for any $x \in \mathbb{R}$, if $|x-c| < \delta$ then $|x^3 - c^3| < \varepsilon$. Hence we have argued for the continuity of the function t^3 at every positive value of t.

5. Let c, ε be positive real numbers. Define $\delta = \min(\frac{\varepsilon c^2}{2}, \frac{c}{2})$.

- (a) Prove that $\delta > 0$ and $\delta \le \frac{c^2}{2}$.
- (b) Let x be a real number. Suppose $|x c| < \delta$.
 - i. Prove that $x > \frac{c}{2}$.

ii. Hence, or otherwise, deduce that $\left|\frac{1}{x} - \frac{1}{c}\right| < \varepsilon$.

Remark. This is what we have verified overall: For any c > 0, for any $\varepsilon > 0$, there exists some $\delta > 0$, (namely, $\delta = \min(\frac{\varepsilon c^2}{2}, \frac{c}{2})$) such that for any $x \in \mathbb{R}$, if $|x - c| < \delta$ then $|1/x - 1/c| < \varepsilon$. Hence we have argued for the continuity of the function 1/t at every positive value of t.

- 6. Let c, ε be positive real numbers. Define $\delta = \min(\varepsilon \sqrt{c}, \frac{c}{2})$.
 - (a) Prove that $\delta > 0$ and $\delta \le \frac{c^2}{2}$.
 - (b) Suppose $|x c| < \delta$.
 - i. Prove that $x > \frac{c}{2}$.
 - ii. Hence, or otherwise, deduce that $|\sqrt{x} \sqrt{c}| < \varepsilon$.

Remark. This is what we have verified overall: For any c > 0, for any $\varepsilon > 0$, there exists some $\delta > 0$, (namely, $\delta = \min(\varepsilon \sqrt{c}, \frac{c}{2})$) such that for any $x \in \mathbb{R}$, if $|x - c| < \delta$ then $|\sqrt{x} - \sqrt{c}| < \varepsilon$. Hence we have argued for the continuity of the function \sqrt{t} at every positive value of t.

- 7. (a) Prove the statement below:
 - Suppose $u, v \in \mathbb{R}$. Then $|u| \le \sqrt{u^2 + v^2}$ and $|u + v| \le 2\sqrt{u^2 + v^2}$.
 - (b) Let a, b be real numbers, and ε be a positive real number. Define $\delta = \frac{\varepsilon}{2}$.

Suppose $\sqrt{(x-a)^2 + (y-b)^2} < \delta$. Prove that $|(x+y) - (a+b)| < \varepsilon$. **Remark.** This is what we have verified overall: For any $a, b \in \mathbb{R}$, for any $\varepsilon > 0$, there exists some $\delta > 0$, (namely, $\delta = \frac{\varepsilon}{2}$) such that for any $x, y \in \mathbb{R}$, if $\sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|(x+y) - (a+b)| < \varepsilon$. Hence we have argued for the continuity of the function s + t at every point (s, t) on the plane \mathbb{R}^2 .

(c) Let a, b be real numbers, and ε be a positive real number. Define $\delta = \min(\frac{\varepsilon}{|a|+|b|+1}, 1)$.

Suppose $\sqrt{(x-a)^2 + (y-b)^2} < \delta$. Prove that $|xy-ab| < \varepsilon$. **Remark.** This is what we have verified overall: For any $a, b \in \mathbb{R}$, for any $\varepsilon > 0$, there exists some $\delta > 0$, (namely, $\delta = \min(\frac{\varepsilon}{|a|+|b|+1}, 1)$) such that for any $x, y \in \mathbb{R}$, if $\sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|xy-ab| < \varepsilon$. Hence we have argued for the continuity of the function s + t at every point (s, t) on the plane \mathbb{R}^2 .